
PicoMite
Benutzerhandbuch

MMBasic- -BASIC-Interpreter
Version 6.02.00

Für den
Raspberry Pi Pico

Raspberry Pi Pico 2
Raspberry Pi Pico W

Raspberry Pi Pico 2 W
und

Module mit den Prozessoren RP2040 und RP2350

Revision 2
(, 26. Januar 2026,)

Aktualisierungen dieses Handbuchs und weitere Infos zu MMBasic findest du unter

http://geoffg.net/picomite.html

und http://mmbasic.com

http://mmbasic.com/
http://geoffg.net/picomite.html

Über

Peter Mather (matherp im Back Shed Forum) hat das Projekt geleitet, MMBasic auf den Raspberry Pi Pico
portiert und die Treiber für dessen Hardwarefunktionen geschrieben. Der MMBasic-Interpreter und dieses
Handbuch wurden von Geoff Graham (http://geoffg.net) geschrieben. Darüber hinaus haben viele andere das
Projekt mit speziellem Code, Tests und Vorschlägen unterstützt.

Support

Fragen zum Support solltest du im Back Shed Forum (http://www.thebackshed.com/forum/Microcontrollers)
stellen, wo es viele begeisterte MMBasic-Nutzer gibt, die dir gerne weiterhelfen. Auch die Entwickler der
PicoMite-Firmware sind regelmäßig in diesem Forum unterwegs.

Urheberrecht und Danksagungen

Die PicoMite-Firmware und MMBasic unterliegen dem Copyright 2011-2025 von Geoff Graham und Peter
Mather 2016-2025.

Das Copyright für die 1-Wire-Unterstützung liegt bei Dallas Semiconductor Corporation (1999–2006) und
Gerard Sexton (2012).

Der FatFs-Treiber (SD-Karte) unterliegt dem Copyright 2014 von ChaN.

Die Unterstützung für WAV-, MP3- und FLAC-Dateien unterliegt dem Copyright 2019 von David Reid.

Die JPG-Unterstützung verdanken wir Rich Geldreich.

Das Copyright für pico-sdk liegt bei Raspberry Pi (Trading) Ltd. 2021.

TinyUSB ist urheberrechtlich geschützt durch tinyusb.org

LittleFS ist urheberrechtlich geschützt, Copyright Christopher Haster

Thomas Williams und Gerry Allardice für die Verbesserungen an MMBasic

Der VGA-Treibercode basiert auf der Arbeit von Miroslav Nemecek

Die CRC-Berechnungen sind urheberrechtlich geschützt durch Rob Tillaart

Der kompilierte Objektcode (die .uf2-Datei) für die PicoMite-Firmware ist freie Software: Du kannst ihn nach
Belieben verwenden oder weitergeben. Der Quellcode ist auf GitHub
(https://github.com/UKTailwind/PicoMiteAllVersions) und kann unter bestimmten Bedingungen frei
verwendet werden (siehe Kopfzeile in den Quelldateien).

Dieses Programm wird in der Hoffnung verteilt, dass es nützlich ist, aber OHNE JEGLICHE GARANTIE,
auch ohne die implizite Garantie der MARKTGÄNGIGKEIT oder EIGNUNG FÜR EINEN BESTIMMTEN
ZWECK.

Dieses Handbuch
Copyright2026 Geoff Graham und Peter Mather

Der Autor dieses Handbuchs ist Geoff Graham, mit umfangreichen Beiträgen von Peter Mather, Harm de
Leeuw, Mick Ames und vielen anderen aus dem Back Shed-Forum. Es wird unter einer Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Australia-Lizenz (CC BY-NC-SA 3.0) verbreitet.

Seite2 PicoMite-Benutzerhandbuch

https://github.com/UKTailwind/PicoMiteAllVersions
http://www.thebackshed.com/forum/Microcontrollers
http://geoffg.net/

PicoMite Benutzerhandbuch Seite 3

Inhalt

Einführung...9

Firmware-Versionen und Dateien...10
Eigenständiger Computer...10

Eingebetteter Controller..10

Prozessorunterstützung...10

Dateinamen...10

Laden der Firmware..11

Serielle Konsole..12
Virtueller serieller Anschluss..12

Terminalemulator...12

Die Konsole..12

Windows 7 und 8.1...13

Apple Macintosh..13

Linux..13

Android...13

Erste Schritte...14
Ein einfaches Programm...14

Eine LED blinken lassen..15

Tutorial zur Programmierung in der Sprache BASIC...15

Hardware-Details...16
Module von Drittanbietern...17

WebMite-Version für den Raspberry Pi Pico W oder Pico 2 W...17

CPU-Varianten...17

PSRAM..18

I/O-Pin-Beschränkungen..18

Stromversorgung..18

Taktrate...19

Stromverbrauch..19

Verwendung von MMBasic..20
Befehle und Programmeingabe...20

Programmstruktur...20

Bearbeiten der Befehlszeile..20

Tastenkombinationen..20

Unterbrechen eines laufenden Programms..21

Optionen einstellen...21

Gespeicherte Variablen...21

Watchdog-Timer...21

PIN-Sicherheit..21

Die Bibliothek..22

Programminitialisierung...22

MM.STARTUP..22

MM.PROMPT..23

MM.END..23

Seite4 PicoMite-Benutzerhandbuch

Vollbild-Editor..24
Bearbeitungsfunktionen..24

Markierungsmodus...25

Alternative Tasten..25

Lange Zeilen...25

Mit der Maus arbeiten...26

Farbcodierte Editoranzeige...26

Variablen und Ausdrücke..27
Variablen..27

Konstanten..27

OPTION DEFAULT..27

OPTION EXPLICIT...28

DIM und LOCAL...28

STATIC..29

CONST...29

Sonderzeichen in Zeichenfolgen...29

Ausdrücke und Operatoren...30

Mischen von Gleitkommazahlen und Ganzzahlen..31

Strukturen...31

64-Bit-Ganzzahlen ohne Vorzeichen..32

Unterprogramme und Funktionen...33
Unterprogramme...33

Funktionen..33

Argumente per Referenz übergeben...33

Arrays übergeben..34

Frühzeitiges Verlassen..34

Rekursion...34

Beispiele...35

Videoausgabe..36
VGA-Video..36

HDMI-Video..36

VGA/PS2-Referenzdesign (Raspberry Pi Pico)..37

HDMI/USB-Referenzdesign (Raspberry Pi Pico 2)..38

Tastatur/Maus/Gamepad...39
PS2-Tastatur auf dem Raspberry Pi Pico (RP2040)..39

PS2-Tastatur auf dem Raspberry Pi Pico 2 (RP2350)...39

PS2-Maus...39

USB-Schnittstelle...40

USB-Hub..40

USB-Tastatur..40

USB-Maus..40

USB-Gamepad..40

Tastatur einrichten..40

Verwendung einer Maus...41

Programm- und Datenspeicher...42
Flash-Steckplätze..42

Flash-Dateisystem..42

PicoMite Benutzerhandbuch Seite 5

SD-Karten...43

Kombinierte Chipauswahl..44

MMBasic-Unterstützung für Flash- und SD-Karten-Dateisysteme...44

XModem-Übertragung...46

Bild laden und speichern..46

Beispiel für sequentielle E/A..47

Zufällige Datei-E/A..48

Soundausgabe..49
Pulsweitenmoduliertes (PWM) Signal..49

Filterschaltungen..49

Unterstützung für VS1053..50

MCP48n2 DAC..50

Wiedergabe von WAV-, FLAC-, MP3- und MOD-Dateien...50

Erzeugung von Sinuswellen..51

Verwendung von PLAY...51

Dienstprogramme...51

Spezielle Audioausgabe..51

Verwendung der I/O-Pins..52
Digitale Eingänge...52

Analoge Eingänge..52

Zähleingänge..52

Digitale Ausgänge..53

Pulsweitenmodulation..53

Kommunikationsschnittstellen (seriell, SPI und I2C)..53

Interrupts..54

Unterstützung spezieller Geräte..56
Infrarot-Fernbedienungsdecoder...56

Infrarot-Fernbedienungssender...57

Temperaturmessung..57

Feuchtigkeits- und Temperaturmessung...58

Echtzeituhr-Schnittstelle...58

Entfernungsmessung...59

LCD-Display..59

Tastatur-Schnittstelle..60

WS2812-Unterstützung..61

OV7670-Kameramodul..61

Anzeigetafeln...62
SPI-basierte Display-Panels..62

I2C-basierte LCD-Panels...64

8-Bit-Parallel-LCD-Panels...64

Anschließen eines 8-Bit-Parallel-LCD-Panels..65

Einrichten eines 8-Bit-Parallel-LCD-Panels...66

8- und 9-Zoll-Displays..67

16-Bit-Parallel-LCD-Panels..67

RP2350 Erweiterte Display-Unterstützung...68

VGA222-Treiber..68

Hintergrundbeleuchtungssteuerung..69

Seite6 PicoMite-Benutzerhandbuch

Touch-Unterstützung..69

Kalibrierung des Touchscreens...70

Touch-Funktionen..70

Touch-Unterbrechungen...70

LCD-Anzeige als Konsolenausgabe...70

Beispiel für die Konfiguration eines SPI-LCD-Panels..71

Grafikfunktionen..73
Unterstützte Hardware..73

Farben...74

Schriftarten...74

Eingebettete Schriftarten..75

Bildschirmkoordinaten...75

Zeichenbefehle...76

Gedrehter Text..77

Transparenter Text..77

Bildspeicher und Ebenen..77

BLIT- und Sprite-Befehle...78

Bild laden...78

Erweiterte Grafik..79

Beispiel für LCD-Grafiken...79

WiFi- und Internetfunktionen...81
Verbindung mit einem WiFi-Netzwerk..81

Fernzugriff auf die Konsole..81

Dateiübertragung..82

Zeit abrufen..82

Einen Webserver einrichten..82

Live-Grafikdaten auf einer Webseite..84

Ein kompletter Allzweck-Server...85

Eine typische Webseite...86

Eingabefelder und Steuerung..86

Einen TCP-Client einrichten...87

UDP verwenden..87

E-Mails senden...88

Base-64-Kodierung...89

MQTT-Client..89

Ping..89

Audio-Streaming..90

Lange Zeichenfolgen...91
Lange Zeichenfolgenvariablen..91

Lange Zeichenfolgenbefehle...91

Funktionen für lange Zeichenfolgen...92

MMBasic-Eigenschaften..93
Namenskonventionen...93

Konstanten..93

Implementierungsmerkmale...93

Kompatibilität...94

PicoMite Benutzerhandbuch Seite 7

Vordefinierte schreibgeschützte Variablen...95
Detaillierte Auflistung..95

Optionen..100
Detaillierte Auflistung..100

Befehle..111
Detaillierte Auflistung..111

Funktionen...184
Detaillierte Auflistung..184

Veraltete Befehle und Funktionen...203
Detaillierte Auflistung..203

Anhang A – Serielle Kommunikation...204
E/A-Pins...204

Befehle...204

Der Befehl OPEN...204

Beispiele...205

Lesen und Schreiben...205

Interrupts..205

Anhang B – I2C-Kommunikation...206
E/A-Pins...206

I2 C-Master-Befehle..206

I2C-Slave-Befehle...207

Fehler..208

7-Bit-Adressierung...208

Beispiele...208

Anhang C – 1-Wire-Kommunikation..209

Anhang D – SPI-Kommunikation..210
E/A-Pins...210

SPI offen...210

Übertragungsformat..210

Standard Senden/Empfangen..210

Massen-Senden/Empfangen..211

SPI schließen..211

Beispiele...211

Anhang E – Regex-Syntax..212
Verwendung regulärer Ausdrücke mit OPTION ESCAPE...213

Anhang F – Das PIO-Programmierpaket..214
Einführung in das PIO..214

Verfügbarkeit von PIOs..214

Überblick über PIO...214

Programmierung von PIO...215

Konfigurieren des PIO..216

FIFOs..218

DMA zu und von den FIFOs..220

Seite8 PicoMite-Benutzerhandbuch

Anhang G – Sprites...225

Anhang H – Turtle-Grafiken..227

Anhang I – Spezielle Tastaturtasten...229

Anhang J – Programmieren in BASIC – Ein Tutorial..231
Befehlszeile..231

Aufbau eines BASIC-Programms...231

Kommentare...232

Der Befehl PRINT..232

Variablen..233

Ausdrücke...234

Die IF-Anweisung..235

FOR-Schleifen..237

Multiplikationstabelle...238

DO-Schleifen..238

Konsoleneingabe..239

GOTO und Labels..240

Prüfung auf Primzahlen..241

Arrays...243

Ganzzahlen...244

Zeichenfolgen...244

Zeichenfolgen bearbeiten..245

Wissenschaftliche Notation..246

DIM-Befehl..247

Konstanten..248

Unterprogramme...248

Funktionen..250

Lokale Variablen..251

Statische Variablen...251

Tage berechnen...252

PicoMite Benutzerhandbuch Seite 9

Einführung

PicoMite ist eine Betriebsfirmware für alle Versionen des Raspberry Pi Pico ,
einschließlich Pico, Pico 2, Pico W und Pico 2 W.

Es enthält einen BASIC-Interpreter (MMBasic), eine mit Microsoft BASIC
kompatible Implementierung der Programmiersprache BASIC mit Gleitkomma-,
Ganzzahl- und Zeichenfolgenvariablen, Arrays, langen Variablennamen, einem
integrierten Programmeditor und vielen weiteren Funktionen.

Es gibt Versionen der PicoMite-Firmware, die für eingebettete
Steuerungsanwendungen (wie Heizungssteuerungen, Einbruchmelder usw.)
geeignet sind, sowie Versionen mit VGA/HDMI- und Tastaturunterstützung für

den Bau eines eigenständigen Computers.

Mit MMBasic kannst du die I/O-Pins steuern und Kommunikationsprotokolle wie I2C oder SPI nutzen, um
Daten von verschiedenen Sensoren zu bekommen. Du kannst Daten auf günstigen Farb-LCD-Displays
anzeigen, Spannungen messen, digitale Eingänge erkennen und Ausgangspins ansteuern, um Lichter, Relais
usw. einzuschalten. Und mit dem Raspberry Pi Pico W kannst du auf das Internet zugreifen und einen WEB-
Server auf diesem günstigen Modul aufbauen.

Die PicoMite-Firmware kann komplett kostenlos runtergeladen und genutzt werden.

Zusammengefasst sind die Funktionen der PicoMite-Firmware:

 Der BASIC-Interpreter ist voll ausgestattet mit doppelter Genauigkeit bei Gleitkommazahlen, 64-Bit-
Ganzzahlen und String-Variablen, langen Variablennamen, Arrays von Gleitkommazahlen, Ganzzahlen
oder Strings mit mehreren Dimensionen, umfangreicher String-Verarbeitung und benutzerdefinierten
Strukturen, Unterprogrammen und Funktionen. Außerdem ermöglicht MMBasic die Einbettung von
kompilierten C-Programmen für Hochleistungsfunktionen. Der Schwerpunkt liegt auf
Benutzerfreundlichkeit und schneller Entwicklung.

 Unterstützung für alle Raspberry Pi Pico-Eingangs-/Ausgangspins. Diese können unabhängig
voneinander als digitaler Eingang oder Ausgang, analoger Eingang, Frequenz- oder Periodemessung und
Zählung konfiguriert werden. Interrupts können verwendet werden, um zu benachrichtigen, wenn ein
Eingangspin seinen Zustand geändert hat. PWM-Ausgänge können verwendet werden, um verschiedene
Töne zu erzeugen, Servos zu steuern oder computergesteuerte Spannungen zu erzeugen.

 Unterstützung für LCD-/OLED-Anzeigetafeln mit parallelen, SPI- und I2C-Schnittstellen, sodass das
BASIC-Programm Text anzeigen und Linien, Kreise, Kästchen usw. in bis zu 16 Millionen Farben
zeichnen kann. Resistive Touch-Controller auf diesen Tafeln werden auch unterstützt, sodass sie als
anspruchsvolle Eingabegeräte genutzt werden können.

 Unterstützung für Internet- und WEB-Protokolle mit dem Raspberry Pi Pico W und Pico 2 W.
Dazu gehört ein WEB-Server mit TCP und HTML, der über TCP und HTTP auf andere Ressourcen
zugreifen kann. MQTT-Protokoll für die Verbindung über einen Message Broker. NTP-Protokoll zum
Abrufen von Datum und Uhrzeit von einem Zeitserver. Telnet für den Fernzugriff auf die Konsole und
TFTP für die schnelle Dateiübertragung.

 Unterstützung für eine PS2- oder USB-Tastatur und HDMI- oder VGA-Videoausgabe. Dazu gehört
die vollständige Unterstützung für Grafiken, Audio (Soundeffekte und Musik), internen
Programmspeicher, Gamecontroller und mehr. Dadurch wird der Raspberry Pi Pico oder zu einem
eigenständigen Computer wie der Apple II oder Tandy TRS-80 von früher. Ideal zum Schreiben von
Spielen, zum Lernen von BASIC oder einfach zum Ausbalancieren deines Scheckbuchs.

 Flexible Programm- und Datenspeicherung. Programme und Daten können aus einem internen
Dateisystem, das aus dem Flash-Speicher des Pico erstellt wurde, oder auf eine extern angeschlossene SD-
Karte mit bis zu 32 GB, die als FAT16 oder FAT32 formatiert ist, gelesen/geschrieben werden. Dazu
gehört das Öffnen von Dateien zum Lesen, Schreiben oder für den Direktzugriff sowie das Laden und
Speichern von Programmen.

 Ein Vollbild-Editor ist in die Firmware integriert und kann das gesamte Programm in einer Sitzung
bearbeiten. Er hat erweiterte Funktionen wie farbcodierte Syntax, Suchen und Kopieren, Ausschneiden
und Einfügen in die und aus der Zwischenablage.

Seite10 PicoMite-Benutzerhandbuch

 Programme können ganz einfach von einem Desktop- oder Laptop-Computer (Windows, Mac oder
Linux) über die serielle Konsole oder eine SD-Karte übertragen werden.

 Es gibt eine ganze Reihe von Kommunikationsprotokollen, wie I2C, asynchrones serielles Protokoll,
RS232, SPI und 1-Wire. Diese können für die Kommunikation mit vielen Sensoren (Temperatur,
Feuchtigkeit, Beschleunigung usw.) sowie für das Senden von Daten an Testgeräte genutzt werden.

 Integrierte Befehle für die direkte Anbindung an Infrarot-Fernbedienungen, den Temperatursensor
DS18B20, LCD-Anzeigemodule, batteriegepufferte Uhren, numerische Tastaturen und mehr.

PicoMite Benutzerhandbuch Seite 11

Firmware-Versionen und Dateien

Die PicoMite-Firmware kann je nach geladener Firmware-Version für zwei unterschiedliche Aufgaben
verwendet werden. Diese Aufgaben sind: ein eigenständiger Computer und ein eingebetteter Controller:

Eigenständiger Computer
Versionen mit VGA- oder HDMI-Videoausgang sind für die Verwendung als eigenständiger Computer
gedacht. Diese starten und zeigen die Ausgabe des BASIC-Interpreters auf dem an den Videoausgang
angeschlossenen Monitor an. Sie sind mit einer PS2- oder USB-Tastatur gekoppelt, und mithilfe der Tastatur
und des Videoausgangs kannst du ein Programm eingeben und bearbeiten, es ausführen, Optionen festlegen
usw.

Da der eigenständige Computer mit der Anzeige der BASIC-Eingabeaufforderung startet, werden sie oft als
„Boot-to-BASIC”-Computer bezeichnet. Sie sind einfach und machen Spaß und waren in den 70er und 80er
Jahren sehr beliebt, zum Beispiel der Apple II, Tandy TRS-80, Commodore 64 und andere.

Wenn ein Programm läuft, wird die gesamte Ausgabe (Text und Grafiken) auf dem Bildschirm angezeigt. Die
Textausgabe wird auch an die serielle Konsole gesendet. Dies ist ein sekundärer Kommunikationskanal, der
den USB-Anschluss des Raspberry Pi Pico nutzt und eine weitere Möglichkeit darstellt, mit einem Desktop-
oder Laptop-Computer mit dem MMBasic-Interpreter zu kommunizieren. Details zur Verwendung findest du
im nächsten Kapitel: Serielle Konsole.

Eingebetteter Controller
Versionen der Firmware ohne Videoausgabe sind in erster Linie für den Einsatz als eingebetteter Controller
gedacht. Hier wird der Raspberry Pi Pico oder Pico 2 als „Gehirn“ in einem Gerät verwendet. Beispiele hierfür
sind Einbruchmeldeanlagen, Heizungssteuerungen, Wetterstationen usw. Oft sind diese Geräte mit einem
berührungsempfindlichen LCD-Panel ausgestattet, über das der Benutzer das Gerät steuern und die Ausgabe
beobachten kann.

Es gibt auch eine Version der Firmware, die die drahtlose Schnittstelle des Raspberry Pi Pico W (und 2 W)
unterstützt. Damit kannst du einen eingebetteten Controller erstellen, auf dem ein Miniatur-Webserver läuft und
der auf das Internet zugreifen kann, um die Uhrzeit abzurufen, E-Mails zu versenden usw.

Um Programme einzugeben, Optionen festzulegen und den Raspberry Pi Pico generell als eingebetteten
Controller zu verwalten, nutzt man die serielle Konsole, um eine Verbindung zu einem Desktop- oder
Laptop-Computer herzustellen. Im Gegensatz zu dem oben beschriebenen eigenständigen Computer ist dies
die einzige Möglichkeit, mit dem BASIC-Interpreter zu kommunizieren, daher ist es wichtig, dass man eine
Verbindung herstellen kann. Eine Beschreibung der seriellen Konsole findest du unter der Überschrift
„Serielle Konsole“ weiter unten.

Prozessorunterstützung
Die PicoMite-Firmware unterstützt die ursprünglichen RP2040-Prozessoren, die im Raspberry Pi Pico
verwendet werden, sowie den neueren RP2350, der im Raspberry Pi Pico 2 zum Einsatz kommt. Die Firmware
ist auch für die Verwendung mit Modulen anderer Hersteller ausgelegt, die die gleichen Chips verwenden.

Während es vom RP2040 nur eine Version gibt, gibt's vom RP2350 vier Unterversionen: RP2350A, RP2350B,
RP2354A und RP2354B. Der RP2350B ist wie der RP2350A, hat aber 18 zusätzliche I/O-Pins (Pins GP30 bis
GP47), die automatisch in MMBasic verfügbar sind. Beide Chips werden von derselben PicoMite-Firmware
unterstützt und funktionieren gleich. In diesem Handbuch gelten daher alle Verweise auf den RP2350
gleichermaßen für die Varianten A und B, und es kann dieselbe Firmware verwendet werden.

Der RP2354A und der RP2354B werden derzeit nicht unterstützt (könnten aber in Zukunft unterstützt werden).

In diesem Handbuch beziehen sich alle Verweise auf den Raspberry Pi Pico auch auf den Raspberry Pi Pico 2,
sofern dies nicht ausdrücklich ausgeschlossen ist. Bei Abweichungen wird die Teilenummer des Prozessors
(RP2040 oder RP2350) verwendet, um den Unterschied deutlich zu machen.

Dateinamen
Die ZIP-Datei mit der Firmware enthält zwölf Firmware-Dateien.

Ein typischer Dateiname für ein Firmware-Image sieht so aus:

 PicoMiteRP2350VGAUSBV6.01.00.uf2

Wobei (in diesem Beispiel):

Seite12 PicoMite-Benutzerhandbuch

 RP2350 der Prozessor ist, für den die Firmware kompiliert wurde.

 VGAUSB die unterstützten Funktionen sind (VGA und USB).

 V6.02.00 die Versionsnummer ist. Diese wird in zukünftigen Versionen erhöht.

 .uf2 ist die Erweiterung, die ein ladbares Raspberry Pi Pico-Firmware-Image kennzeichnet.

Die folgende Tabelle listet die Präfixe für jede Firmware-Datei und die damit verbundenen Funktionen auf.

Firmware-Dateiname
Beispiel:
PicoMiteRP2040V6.01.00.uf2

CPU
Touch-
LCD-
Panel

Tastatur/Maus Videoausgang
WLAN-
InternetPS2 USB VGA HDMI

PicoMiteRP2040 RP2040  

PicoMiteRP2350 RP2350  

PicoMiteRP2040USB RP2040  

PicoMiteRP2350USB RP2350  

PicoMiteRP2040VGA RP2040  

PicoMiteRP2350VGA RP2350  

PicoMiteRP2040VGAUSB RP2040  

PicoMiteRP2350VGAUSB RP2350  

PicoMiteHDMI RP2350  

PicoMiteHDMIUSB RP2350  

WebMiteRP2040 RP2040   

WebMiteRP2350 RP2350A   

Firmware laden
Der Raspberry Pi Pico und der Pico 2 haben einen eigenen eingebauten Firmware-Loader, der echt einfach zu
bedienen ist.

Um die PicoMite-Firmware zu laden, machst du Folgendes:

 Lade die PicoMite-Firmware von http://geoffg.net/picomite.html herunter, entpacke die Datei und suche
die Firmware, die zu deiner Verwendung passt (siehe vorherige Überschriften).

 Schließ den Raspberry Pi Pico mit einem USB-Kabel an deinen Computer (Windows, Linux oder Mac)
an, während du die weiße BOOTSEL-Taste oben auf dem Modul gedrückt hältst.

 Der Raspberry Pi Pico sollte sich mit deinem Computer verbinden und ein virtuelles Laufwerk erstellen
(genauso, als hättest du einen USB-Stick angeschlossen). Du kannst alle Dateien, die sich auf diesem
„Laufwerk” befinden, ignorieren.

 Kopier die Firmware-Datei (mit der Erweiterung .uf2) auf dieses virtuelle Laufwerk.

 Wenn der Kopiervorgang abgeschlossen ist, startet der Raspberry Pi Pico neu und erstellt einen virtuellen
seriellen Anschluss über USB auf deinem Computer. Details zur Verwendung findest du im Kapitel
„Serielle Konsole” weiter unten.

 Die LED am Raspberry Pi Pico blinkt langsam und zeigt damit an, dass die PicoMite-Firmware mit
MMBasic jetzt läuft.

Das vom Raspberry Pi Pico erstellte virtuelle Laufwerk sieht zwar wie ein USB-Speicherstick aus, ist aber
keiner. Die Firmware-Datei verschwindet nach dem Kopieren, und wenn du versuchst, andere Dateitypen zu
kopieren, werden diese ignoriert.

Das Laden der PicoMite-Firmware kann den gesamten Flash-Speicher löschen, einschließlich des aktuellen
Programms, aller Dateien auf Laufwerk A: und aller gespeicherten Variablen. Stell also sicher, dass du diese
Daten vor dem Upgrade der Firmware sicherst.

PicoMite Benutzerhandbuch Seite 13

http://geoffg.net/picomite.html

Es kann passieren, dass der Flash-Speicher beschädigt wird, was zu ungewöhnlichem und unvorhersehbarem
Verhalten führen kann. In diesem Fall solltest du die passende Firmware-Datei, die unten aufgeführt ist,
runterladen und wie oben beschrieben auf den Pico laden. Dadurch wird der Raspberry Pi Pico auf den
Werkszustand zurückgesetzt, und du kannst die PicoMite-Firmware neu laden:

Raspberry Pi Pico (RP2040) https://geoffg.net/Downloads/picomite/Clear_Flash.uf2

Raspberry Pi Pico 2 (RP2350) https://geoffg.net/Downloads/picomite/Clear_Flash_RP2350.uf2

Seite14 PicoMite-Benutzerhandbuch

https://geoffg.net/Downloads/picomite/Clear_Flash_RP2350.uf2

Serielle Konsole

Die serielle Konsole ist eine Möglichkeit, deinen Desktop- oder Laptop-Computer mit dem Raspberry Pi Pico
und der MMBasic-Konsole zu verbinden. Mit dem Zugriff auf die Konsole kannst du Programme eingeben,
bearbeiten, ausführen usw. Die meisten Firmware-Versionen erstellen die serielle Konsole automatisch als
virtuellen seriellen Anschluss über USB. In diesem Kapitel wird beschrieben, wie das funktioniert und wie du
es nutzen kannst.

Bei einem eigenständigen Computer (wie oben beschrieben) ist die serielle Konsole nur eine zusätzliche
Kommunikationsmethode, aber wenn du den Raspberry Pi Pico als eingebetteten Controller benutzt, ist sie die
einzige Kommunikationsmethode, die du hast. Deshalb ist es wichtig, dass du eine Verbindung herstellen
kannst.

Versionen der PicoMite-Firmware, die eine USB-Tastatur/Maus unterstützen, können den seriellen Anschluss
über USB nicht erstellen. Für diese Firmware solltest du daher das Kapitel „Tastatur/Maus/Gamepad” lesen,
um eine Alternative zu finden.

Virtueller serieller Anschluss
Der von der PicoMite-Firmware erstellte virtuelle serielle Anschluss über USB nutzt das CDC-Protokoll
(Communication Device Class) und funktioniert wie ein normaler serieller Anschluss, nur über USB. Windows
10 und 11 haben einen Treiber dafür, aber bei anderen Betriebssystemen musst du vielleicht einen Treiber
laden (siehe nächste Seite).

Wenn du den USB-Anschluss des Raspberry Pi Pico an
deinen Desktop- oder Laptop-Computer anschließt
(nachdem du die PicoMite-Firmware geladen hast), wird
die Verbindung sofort hergestellt.

Du solltest dir dann die Portnummer notieren, die dein
Computer für die virtuelle serielle Verbindung erstellt hat.
Unter Windows kannst du dazu den Geräte-Manager
starten und unter „Anschlüsse (COM & LPT)“ nach einem
neuen COM-Port suchen, wie rechts gezeigt.

Terminalemulator
Du brauchst außerdem einen Terminalemulator, der auf deinem Desktop- oder Laptop-Computer läuft. Dabei
handelt es sich um ein Programm, das wie ein altmodischer Computerterminal funktioniert, auf dem Text von
einem Remote-Computer angezeigt wird und alle Tastendrücke über die serielle Verbindung an den Remote-
Computer gesendet werden. Der von dir verwendete Terminalemulator sollte die VT100-Emulation
unterstützen, da dies für den in die PicoMite-Firmware integrierten Editor erforderlich ist.

Für Windows-Benutzer wird die Verwendung von Tera Term
empfohlen, da dieses Programm über einen guten VT100-
Emulator verfügt und bekanntermaßen mit dem XModem-
Protokoll funktioniert, mit dem Sie Programme zum und vom
PicoMite übertragen können. Tera Term kann unter folgender
Adresse heruntergeladen werden: http://tera-term.en.lo4d.com .

Der Screenshot rechts zeigt die Einstellungen für Tera Term.
Beachte, dass die Einstellung „Port:“ davon abhängt, an welchen
USB-Anschluss dein Raspberry Pi Pico angeschlossen ist.

Die PicoMite-Firmware ignoriert die Baudrateneinstellung,
sodass du jede beliebige Geschwindigkeit einstellen kannst (außer
1200 Baud, da dies den Pico in den Firmware-Upgrade-Modus
versetzt).

Wenn du Tera Term benutzt, stell keine
Verzögerung zwischen den Zeichen ein, und wenn
du Putty benutzt, stell die Rücktaste so ein, dass sie
das Rücktastenzeichen erzeugt.

PicoMite Benutzerhandbuch Seite 15

http://tera-term.en.lo4d.com/

Die Konsole
Sobald du den virtuellen seriellen Port identifiziert und deinen Terminalemulator damit verbunden hast, solltest du
die Eingabetaste auf deiner Tastatur drücken können und die MMBasic-Eingabeaufforderung sehen, die aus dem
Größer-als-Zeichen besteht (z. B. „>“).

Dies ist die Konsole, über die du Befehle zum Konfigurieren von MMBasic, zum Laden des BASIC-Programms,
zum Bearbeiten und Ausführen des Programms eingeben kannst. MMBasic verwendet die Konsole auch zur
Anzeige von Fehlermeldungen.

Windows 7 und 8.1
Der USB-Seriell-Port nutzt das CDC-Protokoll, und die Treiber dafür sind in Windows 10 und 11 Standard und
werden automatisch geladen.

Die Raspberry Pi Foundation listet Windows 7 oder 8.1 als „nicht unterstützt“ auf, aber du kannst ein Tool wie
Zadig (https://zadig.akeo.ie) verwenden, um einen generischen Treiber für ein „usbser“-Gerät zu installieren,
der die Verbindung dieser Computer ermöglichen sollte. Dieser Beitrag beschreibt den Vorgang:
https://github.com/raspberrypi/pico-feedback/issues/118

Apple Macintosh
Der Apple Macintosh (OS X) ist etwas einfacher, da er über einen integrierten Gerätetreiber und
Terminalemulator verfügt. Starten Sie zunächst die Anwendung „Terminal“ und listen Sie die angeschlossenen
seriellen Geräte auf, indem Sie Folgendes eingeben:

ls /dev/tty.*.

Der USB-zu-Seriell-Konverter wird als etwas wie /dev/tty.usbmodem12345 aufgelistet. Während du
noch an der Terminal-Eingabeaufforderung bist, kannst du den Terminalemulator mit 115200 Baud ausführen,
indem du den folgenden Befehl verwendest:

screen /dev/tty.usbmodem12345 115200

Standardmäßig sind die Funktionstasten für die Verwendung im integrierten Programmeditor des PicoMite
nicht richtig definiert, sodass du die im Kapitel „Vollbild-Editor” dieses Handbuchs definierten
Steuerungssequenzen verwenden musst. Um das zu vermeiden, kannst du den Terminalemulator so
konfigurieren, dass er diese Codes generiert, wenn die entsprechenden Funktionstasten gedrückt werden.

Die Dokumentation zum Befehl „screen” findest du hier: https://www.systutorials.com/docs/linux/man/1-
screen/

Linux
Für Linux sieh dir diese Beiträge an:

https://www.thebackshed.com/forum/ViewTopic.php?TID=14157&PID=175474#175474#175466

und

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=16312&LastEntry=Y#213664#213594

Android
Für Android-Geräte check diesen Beitrag:

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17476&LastEntry=Y#230521#230517

Seite16 PicoMite-Benutzerhandbuch

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17476&LastEntry=Y#230521
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=16312&LastEntry=Y#213664
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=16312&LastEntry=Y#213664
https://www.thebackshed.com/forum/ViewTopic.php?TID=14157&PID=175474#175474
https://www.systutorials.com/docs/linux/man/1-screen/
https://www.systutorials.com/docs/linux/man/1-screen/
https://github.com/raspberrypi/pico-feedback/issues/118
https://github.com/raspberrypi/pico-feedback/issues/118
https://zadig.akeo.ie/

Erste Schritte

Sobald du Zugriff auf die Konsole und die MMBasic-Eingabeaufforderung hast, kannst du ein paar Dinge
machen, um zu zeigen, dass dein Computer funktioniert. Alle diese Befehle solltest du in die Eingabeaufforderung
(d. h. „>“) eingeben.

Was du eingibst, wird fett dargestellt, und die MMBasic-Ausgabe wird in normaler Schrift angezeigt.

Probier mal eine einfache Berechnung aus:
> PRINT 1/7

 0,1428571429

Schau nach, wie viel Speicher du hast:
> MEMORY
Programm:
 0K (0%) Programm (0 Zeilen)
 180K (100 %) Kostenlos

Gespeicherte Variablen:
 16 KB (100 %) frei

RAM:
 0K (0 %) 0 Variablen
 0K (0 %) Allgemein
 228K (100 %) frei 112K (100 %) frei

Wie spät ist es gerade? Denk dran, dass die interne Uhr beim Einschalten auf Mitternacht zurückgesetzt wird.
> PRINT TIME$
00:04:01

Stell die Uhr auf die aktuelle Zeit ein:
> TIME$ = "10:45"

Überprüfe die Uhrzeit noch mal:
> PRINT TIME$
10:45:09

Zähle bis 20:

> FOR a = 1 to 20 : PRINT a; : NEXT a
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ein einfaches Programm
Um ein Programm einzugeben, kannst du den Befehl EDIT verwenden, der später in diesem Handbuch
beschrieben wird. Im Moment musst du aber nur wissen, dass alles, was du eingibst, an der Cursorposition
eingefügt wird, dass du den Cursor mit den Pfeiltasten bewegen kannst und dass du mit der Rücktaste das
Zeichen vor dem Cursor löschen kannst.

Um einen schnellen Eindruck von der Funktionsweise von MMBasic zu bekommen, probier mal diese Sequenz
aus:

 Gib an der Eingabeaufforderung EDIT ein und drück dann die ENTER-Taste.

 Der Editor sollte starten und du kannst diese Zeile eingeben: PRINT „Hallo Welt“

 Drück die Taste F1 in deinem Terminalemulator (oder STRG-Q, was dasselbe bewirkt). Dadurch wird
der Editor angewiesen, dein Programm zu speichern und zur Eingabeaufforderung zurückzukehren.

 Gib an der Eingabeaufforderung RUN ein und drück dann die ENTER-Taste.

 Du solltest die Meldung „Hello World” sehen.

PicoMite Benutzerhandbuch Seite 17

Herzlichen Glückwunsch. Du hast gerade dein erstes Programm in BASIC geschrieben und ausgeführt.

Wenn du erneut EDIT eingibst, gelangst du zurück zum Editor, wo du dein Programm ändern oder ergänzen
kannst.

Eine LED blinken lassen
Schließ eine LED an den Pin GP21 (auf der Unterseite der Platine
markiert) und einen Massepin an, wie in der Abbildung rechts gezeigt.

Gib dann mit dem Befehl EDIT das folgende Programm ein:
SETPIN GP21, DOUT
DO
 PIN(GP21) = 1
 PAUSE 300
 PIN(GP21) = 0
 PAUSE 300
LOOP

Wenn du dieses Programm gespeichert und ausgeführt hast, sollte die LED blinken. Es ist kein großartiges
Programm, aber es zeigt, wie die PicoMite-Firmware über deine Programmierung mit der physischen Welt
interagieren kann.

Das Programm selbst ist einfach. In der ersten Zeile wird Pin GP21 als Ausgang festgelegt. Dann geht das
Programm in eine Endlosschleife, in der der Ausgang dieses Pins auf „hoch” gesetzt wird, um die LED
einzuschalten, gefolgt von einer kurzen Pause (300 Millisekunden). Der Ausgang wird dann auf „niedrig”
gesetzt, gefolgt von einer weiteren Pause. Das Programm wiederholt dann die Schleife.

Wenn du es so lässt, bleibt der Raspberry Pi Pico einfach stehen und die LED blinkt weiter. Wenn du was
ändern willst (z. B. die Blinkgeschwindigkeit), kannst du das Programm mit STRG-C auf der Konsole
unterbrechen und dann nach Bedarf anpassen. Das ist der große Vorteil von MMBasic: Es ist super einfach,
ein Programm zu schreiben und zu ändern.

Wenn du möchtest, dass dieses Programm jedes Mal automatisch startet, wenn die Stromversorgung
eingeschaltet wird, kannst du den folgenden Befehl an der Eingabeaufforderung oder im Programm verwenden:

OPTION AUTORUN ON

Um das zu testen, kannst du die Stromversorgung unterbrechen und dann wieder einschalten. Das Gerät sollte
dann mit dem Blinken der LED starten.

Tutorial zur Programmierung in der Sprache BASIC

Wenn du noch keine Erfahrung mit der Programmiersprache BASIC hast, solltest du dir jetzt den Anhang J
(Programmieren in BASIC – Ein Tutorial) am Ende dieses Handbuchs ansehen. Das ist ein umfassendes
Tutorial zur Sprache, das dir die Grundlagen in einem leicht verständlichen Format mit vielen Beispielen
vermittelt.

Seite18 PicoMite-Benutzerhandbuch

Details zur Hardware-

Dieses Diagramm zeigt die möglichen Verwendungszwecke innerhalb von MMBasic für jeden I/O-Pin auf dem
Raspberry Pi Pico und Pico 2:

Bei Versionen mit VGA-Videoausgang sind sechs Pins (GP16 bis GP21) für diese Funktion reserviert. Ebenso
haben HDMI-Versionen acht Pins (GP12 bis GP19), die für diese Funktion reserviert sind. Weitere Infos
findest du im Kapitel „Videoausgang”.

Die Firmware-Version mit USB-Tastatur-/Mausunterstützung reserviert außerdem Pin 11 (GP8) für die serielle
Konsole Tx und Pin 12 (GP9) für Rx. Weitere Infos findest du im Kapitel „Tastatur/Maus/Gamepad”.

Die Notation ist wie folgt:

GP0 bis GP28 Können für digitale Ein- oder Ausgänge genutzt werden.

COM1, COM2 Kann für asynchrone serielle E/A verwendet werden (Pins UART0 und UART1 im Pico-
Datenblatt).

I2C, I2C2 Kann für I2C-Kommunikation verwendet werden (I2C0- und I2C1-Pins im Pico-
Datenblatt).

SPI, SPI2 Kann für SPI-E/A verwendet werden (siehe Anhang D). (SPI0- und SPI1-Pins im Pico-
Datenblatt).

PWMnx Kann für PWM-Ausgabe verwendet werden (siehe die Befehle PWM und SERVO).

GND Gemeinsame Masse.

VBUS 5-V-Versorgung direkt über den USB-Anschluss.

VSYS 5-V-Versorgung, die vom SMPS genutzt wird, um 3,3 V zu liefern. Kann als 5-V-
Ausgang oder -Eingang genutzt werden.

3V3EN 3,3-V-Regler einschalten (niedrig = aus, hoch = eingeschaltet).

RUN Reset-Pin, niedrig hält das Gerät im Reset-Zustand.

ADCn Diese Pins können zum Messen der Spannung (Analogeingang) verwendet werden.

ADC VREF Referenzspannung für die Spannungsmessung.

AGND Analoge Masse.

Im MMBasic-Programm kannst du auf I/O-Pins mit der physischen Pin-Nummer (also 1 bis 40) oder der GP-
Nummer (also GP0 bis GP28) zugreifen. Zum Beispiel beziehen sich die folgenden Befehle auf denselben Pin
und funktionieren gleich:

SETPIN 32, DOUT

PicoMite Benutzerhandbuch Seite 19

und SETPIN GP27, DOUT

Die Pin-Nummern (d. h. 1 bis 40) gelten nur für die Standardformate Pico und Pico 2. Andere Module von
Drittanbietern können ein anderes Pin-Nummerierungsschema haben. Aus diesem Grund wird dringend
empfohlen, bei der Referenzierung eines I/O-Pins nur die GP-Nummer zu verwenden.

In der PicoMite-Firmware sind On-Chip-Funktionen wie die SPI- und I2C-Schnittstellen nicht wie
beispielsweise beim Micromite festen Pins zugeordnet. Die PicoMite-Firmware nutzt den Befehl SETPIN
ausgiebig, nicht nur zur Konfiguration von I/O-Pins, sondern auch zur Konfiguration der Pins, die für
Schnittstellen wie Seriell, SPI, I2C usw. verwendet werden.

Die Pins müssen gemäß dieser Zeichnung zugewiesen werden. Beispielsweise kann der SPI TX den Pins GP3,
GP7 oder GP19 zugewiesen werden, aber nicht dem Pin GP11, der nur dem SPI2-Kanal zugewiesen werden
kann. Die Zuweisungen müssen nicht im selben „Block” erfolgen, sodass Sie beispielsweise SPI2 TX dem Pin
GP11 und SPI2 RX dem Pin GP28 zuweisen können.

Module von Drittanbietern

Auf Pins, die auf dem Raspberry Pi Pico nicht freigelegt sind, kann über MMBasic trotzdem über ihre GPn-
Nummer zugegriffen werden. Dadurch kann MMBasic auf anderen Modulen verwendet werden, die die
Prozessoren RP2040 oder RP2350 nutzen.

Auf dem Raspberry Pi Pico werden diese versteckten Pins für interne Funktionen wie folgt verwendet:

 GP23 ist ein digitaler Ausgang, der auf den Wert von OPTION POWER gesetzt ist. (ON=PWM,
OFF=PFM).

 GP24 ist ein digitaler Eingang, der bei vorhandener VBUS-Spannung hoch ist.

 GP25 ist auch PWM4B. Es ist ein Ausgang, der mit der integrierten LED verbunden ist.

 GP29 ist auch ADC3, ein analoger Eingang, der ⅓ von VSYS liest.

Auf Modulen von Drittanbietern, die diese Pins zur Verfügung stellen, können sie aber wie folgt genutzt
werden:

 GP23: DIGITAL_IN: DIGITAL_OUT, SPI TX, I2C2 SCL, PWM3B

 GP24: DIGITAL_IN: DIGITAL_OUT, SPI2 RX, COM2 TX, I2C SDA, PWM4A

 GP25: DIGITAL_IN: DIGITAL_OUT, COM2 RX, I2C SCL, PWM4B

 GP29: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, COM1 RX, I2C SCL, PWM6B

WebMite-Version für den Raspberry Pi Pico W oder Pico 2 W

Die WebMite-Version hat auch ein paar GPIO-Pins, die für interne Board-Funktionen genutzt werden:

 GP29 (Eingang/Ausgang) drahtloser SPI CLK/ADC-Modus (ADC3) misst VSYS/3

 GP25 SPI CS (Ausgang) aktiviert bei hohem Pegel auch den GPIO29-ADC-Pin zum Lesen von VSYS

 GP24 (Eingang/Ausgang) kabellose SPI-Daten / IRQ

 GP23 (Ausgang) drahtloses Einschaltsignal

Die WebMite-Firmware lässt keine Neuzuweisung dieser Pins zu.

Anders als beim normalen Raspberry Pi Pico ist die LED auf dem Pico W nicht mit einem Pin auf dem RP2040
verbunden, sondern mit einem GPIO-Pin auf dem Wireless-Chip und kann nicht über ein BASIC-Programm
angesprochen werden.

Die Antenne befindet sich auf der Leiterplatte am gegenüberliegenden Ende des USB-Anschlusses und sollte
für eine optimale Leistung frei zugänglich sein – leg kein Metall unter oder in die Nähe der Antenne.

CPU-Varianten
Die von der Raspberry Pi Foundation für den Pico und Pico 2 veröffentlichten Chips sind:

RP2040

Dieser ist in einem 60-Pin-Gehäuse untergebracht und wird im originalen Raspberry Pi Pico und vielen anderen
Modulen von Drittanbietern verwendet. Die Pinbelegung und Funktionen der I/O-Pins sind wie oben
beschrieben.

RP2350A

Seite20 PicoMite-Benutzerhandbuch

Auch dieser Chip ist in einem 60-Pin-Gehäuse verpackt und wird im Raspberry Pi Pico 2 und in Modulen von
Drittanbietern verwendet. Die Pinbelegung und Funktionen der I/O-Pins sind die gleichen wie beim RP2040
und sind oben beschrieben.

RP2350B

Der RP2350B kommt in einem 80-Pin-Gehäuse mit zusätzlichen 18 GPIO-Pins. Die PicoMite-Firmware
unterstützt diese zusätzlichen Pins, einschließlich der PWM-Kanäle 8-11 (was maximal 24 gleichzeitige PWM-
Ausgänge ermöglicht). Die Konfiguration für den RP2350B läuft automatisch ab, sodass alle zusätzlichen
Pins und drei PIO-Kanäle verfügbar sind (die VGA-Version hat zwei freie PIO-Kanäle). Die Pin-Definitionen
für den RP2350B sollten die GP-Nomenklatur verwenden (d. h. GP0 bis GP47). Die Pins GP40 bis GP47
können für analoge Eingänge verwendet werden, die Pins GP26-GP29 unterstützen keine analogen Eingänge.

Die Pinbelegung für die Pins GP0 bis GP29 auf dem RP2350B ist die gleiche wie beim RP2040 und RP2350A.
Die Pins GP30 bis GP47 können wie folgt genutzt werden:

GP30: DIGITAL_IN: DIGITAL_OUT, SPI2 SCK, I2C2 SDA, PWM7A

GP31: DIGITAL_IN: DIGITAL_OUT, SPI2 TX, I2C2 SCL, PWM7B

GP32: DIGITAL_IN: DIGITAL_OUT, COM1 TX, SPI RX, I2C SDA, EXT_PWM8A

GP33: DIGITAL_IN: DIGITAL_OUT, COM1 RX, I2C SCL, PWM8B

GP34: DIGITAL_IN: DIGITAL_OUT, SPI SCK, I2C2 SDA, PWM9A

GP35: DIGITAL_IN: DIGITAL_OUT, SPI TX, I2C2 SCL, PWM9B

GP36: DIGITAL_IN: DIGITAL_OUT, COM2 TX, SPI RX, I2C SDA, PWM10A

GP37: DIGITAL_IN: DIGITAL_OUT, COM2 RX, I2C SCL, PWM10B

GP38: DIGITAL_IN: DIGITAL_OUT, SPI SCK, I2C2 SDA, PWM11A

GP39: DIGITAL_IN: DIGITAL_OUT, SPI TX, I2C2 SCL, PWM11B

GP40: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, COM2 TX, SPI2 RX, I2C SDA, PWM8A

GP41: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, COM2 RX, I2C SCL, PWM8B

GP42: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, SPI2 SCK, I2C2 SDA, PWM9A

GP43: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, SPI2 TX, I2C2 SCL, PWM9B

GP44: DIGITAL_IN: DIGITAL_OUT, COM1TX, ANALOG_IN, SPI2 RX, I2C SDA, PWM10A

GP45: DIGITAL_IN: DIGITAL_OUT, COM1RX, ANALOG_IN, I2C SCL, PWM10B

GP46: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, SPI2 SCK, I2C2 SDA, PWM11A

GP47: DIGITAL_IN: DIGITAL_OUT, ANALOG_IN, SPI2 TX, I2C2 SCL, PWM11B

RP2354A und RP2354B

Die werden gerade nicht von der PicoMite-Firmware unterstützt.

PSRAM
Der RP2350 unterstützt PSRAM, und einige kommerzielle Angebote haben Boards mit dem 80-poligen
RP2350B um 8 MB PSRAM erweitert (z. B. Pimoroni PGA2350).

Der Zugriff auf den PSRAM erfolgt über denselben Quad-SPI-Bus, den auch der Flash-Speicher nutzt, sodass
er vergleichsweise langsam ist, obwohl er über einen Cache gepuffert wird, der dieses Problem etwas
abmildert. Wenn ein PSRAM vorhanden und konfiguriert ist, fügt MMBasic ihn dem allgemeinen RAM-Pool
hinzu, sodass Programme eine riesige Menge an allgemeinem RAM zur Verfügung haben, auch wenn dieser
etwas langsamer sein kann.

Um auf einen PSRAM zuzugreifen, wird ein zusätzlicher Pin für die Chip-Auswahlfunktion benötigt, der mit
dem Befehl OPTION PSRAM PIN ausgewählt wird. Gültige Pins für die PSRAM-Chip-Auswahl sind GP0,
GP8, GP19 und GP47.

Nach dem Einschalten ist der Inhalt des PSRAM unbestimmt – er ist nicht Null. Du musst RAM ERASE
verwenden, um ihn vor der Verwendung zu löschen. Dieses Verhalten ist beabsichtigt, damit der Inhalt nach
einem Reset erhalten bleibt.

I/O-Pin-Beschränkungen

Die maximale Spannung, die an einen beliebigen I/O-Pin des Raspberry Pi Pico mit RP2040-Prozessor
angelegt werden kann, beträgt 3,6 V. Der Raspberry Pi Pico 2 mit RP2350-Prozessor kann 5 V aufnehmen,
während der Chip mit Strom versorgt wird.

PicoMite Benutzerhandbuch Seite 21

Als Ausgänge können alle I/O-Pins einzeln bis zu 8 mA liefern oder aufnehmen. Bei dieser Last sinkt die
Ausgangsspannung auf etwa 2,3 V. Eine praktischere Last ist 5 mA, bei der die Ausgangsspannung
typischerweise 3 V beträgt. Um eine rote LED mit 5 mA zu betreiben, wird ein Widerstand von 220 Ω
empfohlen. Andere Farben erfordern möglicherweise einen anderen Wert.

Die maximale Gesamt-I/O-Stromlast für den gesamten Chip beträgt 100 mA.

Stromversorgung

Der Raspberry Pi Pico und Pico 2 hat ein flexibles
Stromversorgungssystem .

Die Eingangsspannung von den USB- oder VBUS-
Eingängen wird über eine Schottky-Diode mit dem
Buck-Boost-SMPS (Switch Mode Power Supply)
verbunden, das eine Ausgangsspannung von 3,3 V
hat. Das SMPS kann Eingangsspannungen von 1,8 V
bis 5,5 V verarbeiten, sodass das Gerät mit einer
Vielzahl von Stromquellen, einschließlich Batterien,
betrieben werden kann.

Externe Schaltungen können über VBUS
(normalerweise 5 V) oder über den 3V3-Ausgang (3,3 V) mit Strom versorgt werden, der bis zu 300 mA liefern
kann.

Für eingebettete Controller-Anwendungen wird in der Regel eine externe Stromquelle (außer USB) benötigt,
die über eine Schottky- -Diode () an VSYS angeschlossen werden kann. Dadurch kann der Raspberry Pi Pico
mit der Stromquelle betrieben werden, die die höchste Spannung liefert (USB oder VSYS). Die Dioden
verhindern eine Rückkopplung in die Stromquelle mit niedrigerer Spannung.

Um das Rauschen der Stromversorgung zu minimieren, kann man 3V3EN erden, um das SMPS auszuschalten.
Beim Herunterfahren hört der Wandler auf zu schalten, die interne Steuerschaltung wird ausgeschaltet und die
Last wird getrennt. Dann kann man die Platine über einen linearen 3,3-V-Regler versorgen, der in den 3V3-Pin
eingespeist wird.

Taktrate

Standardmäßig ist die Taktrate für den RP2040 im Raspberry Pi Pico auf 200 MHz und für den RP2350 im
Raspberry Pi Pico 2 auf 150 MHz eingestellt. Das sind die empfohlenen Höchstwerte.

Mit dem Befehl OPTION CPUSPEED können die meisten RP2040-CPUs auf bis zu 420 MHz und der RP2350
(nur PicoMite und WebMite) auf bis zu 396 MHz übertaktet werden. Sie können auch langsamer mit einer
Mindestgeschwindigkeit von 48 MHz laufen. Diese Option wird gespeichert und beim Einschalten wieder
angewendet. Wenn du die Taktrate änderst, wird die PicoMite-Firmware zurückgesetzt und neu gestartet,
sodass die USB-Verbindung unterbrochen wird.

Bei VGA/HDMI-Versionen mit einer Videoauflösung von 640 x 400 wird die Taktrate auf 252 MHz
eingestellt, das kann aber mit OPTION RESOLUTION auf 252 MHz, 315 MHz oder 378 MHz geändert
werden. Bei anderen Videoauflösungen ist die Taktrate je nach gewählter Videoauflösung auf 283,2 MHz, 324
MHz, 360 MHz, 372 MHz oder 375 MHz festgelegt und kann nicht geändert werden.

Fast alle getesteten Raspberry Pi Picos haben bei 380 MHz oder mehr einwandfrei funktioniert, sodass eine
Übertaktung sinnvoll sein kann. Wenn der Prozessor bei seiner neuen Taktrate nicht neu startet, kannst du ihn
zurücksetzen, indem du Clear_flash.uf2 lädst, um den Pico auf seinen Werkszustand zurückzusetzen (siehe
Abschnitt „Laden der Firmware“ oben).

Stromverbrauch

Der Stromverbrauch von „ “ hängt von der Taktrate ab, aber bei der Standardtaktrate (200 MHz für den
RP2040 und 150 MHz für den RP2350) liegt der typische Stromverbrauch bei 25 mA. Dabei ist der Strom, der
von den I/O-Pins oder dem 3V3-Pin bezogen oder abgegeben wird, nicht mit eingerechnet:

Der Stromverbrauch der WebMite-Version für den Raspberry Pi Pico W ist bei deaktiviertem WLAN mit 20
mA gleich, aber wenn das WLAN aktiviert ist, steigt der Stromverbrauch auf 40 bis 70 mA.

Seite22 PicoMite-Benutzerhandbuch

Verwendung von MMBasic

Befehle und Programmeingabe
An der Eingabeaufforderung kannst du einen Befehl eingeben, der dann sofort ausgeführt wird. Meistens
machst du das, um der PicoMite-Firmware zu sagen, dass sie etwas tun soll, wie zum Beispiel ein Programm
ausführen oder eine Option einstellen. Mit dieser Funktion kannst du aber auch Befehle an der
Eingabeaufforderung ausprobieren.

Um ein Programm einzugeben, ist es am einfachsten, den Befehl EDIT zu verwenden. Dadurch wird der
Vollbild-Programmeditor aufgerufen, der in die PicoMite-Firmware integriert ist und später in diesem
Handbuch beschrieben wird. Er hat erweiterte Funktionen wie Suchen und Kopieren, Ausschneiden und
Einfügen in die Zwischenablage.

Du kannst das Programm auch auf deinem Desktop-Computer mit einem Programm wie Notepad erstellen und
es dann über die Protokolle XModem oder YModem (siehe Befehl XMODEM oder YMODEM) oder per
Streaming über die serielle Konsolenverbindung (siehe Befehl AUTOSAVE) auf den Raspberry Pi Pico
übertragen.

Eine dritte und bequeme Methode zum Schreiben und Debuggen eines Programms ist die Verwendung von
MMEdit. Dabei handelt es sich um ein Programm, das auf deinem Windows-Computer läuft und mit dem du
dein Programm auf deinem Computer bearbeiten und dann mit einem einzigen Mausklick auf den PicoMite
übertragen kannst. MMEdit wurde von Jim Hiley geschrieben und kann kostenlos heruntergeladen und
verwendet werden. Weitere Informationen findest du unter: https://geoffg.net/mmedit.html

Eine Sache, die du nicht machen kannst, ist die alte BASIC-Methode zum Eingeben eines Programms, bei der
jeder Zeile eine Zeilennummer vorangestellt wurde. Zeilennummern sind in MMBasic optional, du kannst sie
also weiterhin verwenden, wenn du möchtest, aber wenn du eine Zeile mit einer Zeilennummer an der
Eingabeaufforderung eingibst, führt MMBasic sie einfach sofort aus.

Programmstruktur

Ein BASIC-Programm beginnt in der ersten Zeile und läuft bis zum Ende des Programms oder bis es auf einen
END-Befehl trifft. An diesem Punkt zeigt MMBasic die Eingabeaufforderung (>) auf der Konsole an und
wartet auf eine Eingabe.

Ein Programm besteht aus einer Reihe von Anweisungen oder Befehlen, von denen jeder den BASIC-
Interpreter dazu veranlasst, etwas zu tun (die Begriffe „Anweisung” und „Befehl” haben im Allgemeinen
dieselbe Bedeutung und werden synonym verwendet). Normalerweise steht jede Anweisung in einer eigenen
Zeile, aber du kannst auch mehrere Anweisungen in einer Zeile haben, die durch das Doppelpunktzeichen (:)
getrennt sind. Zum Beispiel.

A = 24.6 : PRINT A

Anhang J (Programmieren in BASIC – Ein Tutorial) am Ende dieses Handbuchs enthält ein umfassendes
Tutorial zur Sprache, das dir die Grundlagen in einem leicht verständlichen Format mit vielen Beispielen
vermittelt.

Bearbeiten der Befehlszeile
Wenn du eine Zeile an der Eingabeaufforderung eingibst, kannst du sie mit den Pfeiltasten nach links und
rechts bearbeiten, indem du dich entlang der Zeile bewegst, mit der Entf-Taste ein Zeichen löschst, mit der
Rücktaste vor dem Cursor löschst und mit der Einfügen-Taste zwischen Einfüge- und Überschreibmodus
wechselst. Mit Home/End kannst du zum Anfang/Ende der Zeile springen, und wenn du zweimal Home
drückst, wird die Bearbeitung beendet. Mit der Eingabetaste kannst du die Zeile jederzeit an MMBasic senden,
das sie dann ausführt.

Mit den Aufwärts- und Abwärtspfeiltasten kannst du durch den Verlauf zuvor eingegebener Befehlszeilen
navigieren, die du bearbeiten und wiederverwenden kannst.

Tastenkombinationen
Die Funktionstasten auf der Tastatur, die für die Konsole verwendet werden, kannst du an der
Eingabeaufforderung verwenden, um häufig verwendete Befehle automatisch einzugeben. Diese
Funktionstasten fügen den Text ein, gefolgt von der Eingabetaste, sodass der Befehl sofort ausgeführt wird:

F2 RUN

PicoMite Benutzerhandbuch Seite 23

https://geoffg.net/mmedit.html

F3 LIST
F4 EDIT
F5 Schickt eine ESC-Sequenz, um den VT100-Bildschirm zu löschen. Löscht auch die Konsole.
F10 AUTOSAVE
F11 XMODEM EMPFANGEN
F12 XMODEM SENDEN

Die Funktionstasten F1 und F5 bis F9 kannst du mit eigenem Text programmieren. Schau dir dazu den Befehl
OPTION FNKey an.

Ein laufendes Programm unterbrechen
Ein Programm wird mit dem Befehl RUN gestartet. Du kannst MMBasic und das laufende Programm jederzeit
unterbrechen, indem du STRG-C auf der Konsole eingibst. MMBasic kehrt dann zur Befehlszeile zurück.

Optionen einstellen
Viele Optionen kannst du mit Befehlen einstellen, die mit dem Schlüsselwort OPTION anfangen. Die sind in
einem eigenen Abschnitt dieses Handbuchs aufgelistet. Bei manchen Firmware-Versionen kannst du zum
Beispiel die CPU-Taktrate mit dem Befehl ändern:

OPTION CPUSPEED Geschwindigkeit

Gespeicherte Variablen
Oft musst du Daten speichern, die nach einem Stromausfall wiederhergestellt werden können, z. B.
Programmoptionen, Kalibrierungseinstellungen usw. Das kannst du mit dem Befehl VAR SAVE machen, der
die in seiner Befehlszeile aufgeführten Variablen in einem nichtflüchtigen Flash-Speicher speichert. Der für
gespeicherte Variablen reservierte Speicherplatz beträgt 16 KB.

Diese Variablen können mit dem Befehl VAR RESTORE wiederhergestellt werden, der alle gespeicherten
Variablen zur Variablentabelle des laufenden Programms hinzufügt. Normalerweise wird dieser Befehl am
Anfang eines Programms platziert, damit die Variablen vom Programm verwendet werden können.

Diese Funktion ist zum Speichern von Kalibrierungsdaten, vom Benutzer ausgewählten Optionen und anderen
Elementen gedacht, die sich selten ändern. Sie sollte nicht für Hochgeschwindigkeitsspeicherungen verwendet
werden, da dies zu einer Abnutzung des Flash-Speichers führen kann. Der für den Raspberry Pi Pico
verwendete Flash-Speicher hat eine hohe Lebensdauer, die jedoch durch ein Programm, das wiederholt
Variablen speichert, überschritten werden kann. Wenn du Daten häufig speichern möchtest, solltest du einen
Echtzeituhr-Chip hinzufügen. Mit den RTC-Befehlen kannst du dann Daten im batteriegepufferten Speicher der
Echtzeituhr speichern und abrufen. Weitere Informationen findest du unter dem Befehl RTC.

Gespeicherte Variablen werden gelöscht, wenn ein neues Programm geladen wird.

Watchdog-Timer
Eine der Anwendungen für den Raspberry Pi Pico ist der Einsatz als eingebetteter Controller. Er kann in
MMBasic programmiert werden, und wenn das Programm debuggt und einsatzbereit ist, kann die
Konfigurationseinstellung OPTION AUTORUN aktiviert werden. Das Modul führt dann sein Programm
automatisch aus, wenn es mit Strom versorgt wird, und fungiert als benutzerdefinierte Schaltung, die eine
bestimmte Aufgabe ausführt. Der Benutzer muss nichts darüber wissen, was darin abläuft.

Es besteht jedoch die Möglichkeit, dass ein Fehler im Programm dazu führt, dass MMBasic einen Fehler
generiert und zur Eingabeaufforderung zurückkehrt. In einer eingebetteten Situation wäre dies wenig hilfreich,
da das Gerät nicht mit der Konsole verbunden wäre. Eine weitere Möglichkeit besteht darin, dass das BASIC-
Programm aus irgendeinem Grund in einer Endlosschleife hängen bleibt. In beiden Fällen wäre der sichtbare
Effekt derselbe: Das Programm würde so lange nicht mehr laufen, bis die Stromversorgung unterbrochen und
wiederhergestellt wird.

Um das zu verhindern, kann man den Watchdog-Timer nutzen. Das ist ein Timer, der bis Null runterzählt und
wenn er Null erreicht, werden die Prozessoren automatisch neu gestartet (genau wie beim ersten Einschalten),
auch wenn MMBasic gerade an der Eingabeaufforderung hängt. Nach dem Neustart wird die automatische
Variable MM.WATCHDOG auf „true” gesetzt, um zu zeigen, dass der Neustart wegen eines Watchdog-
Timeouts passiert ist.

Der Befehl WATCHDOG sollte an strategischen Stellen im Programm platziert werden, um den Timer immer
wieder zurückzusetzen und so zu verhindern, dass er bis Null herunterzählt. Wenn dann ein Fehler auftritt, wird
der Timer nicht zurückgesetzt, sondern zählt bis Null herunter und das Programm wird neu gestartet
(vorausgesetzt, die Option AUTORUN ist aktiviert).

Seite24 PicoMite-Benutzerhandbuch

PIN-Sicherheit
Manchmal ist es wichtig, die Daten und das Programm in einem eingebetteten Controller vertraulich zu
behandeln. In der PicoMite-Firmware kann das mit dem Befehl OPTION PIN gemacht werden. Dieser Befehl
legt eine PIN-Nummer fest (die im Flash-Speicher gespeichert wird), und wenn die PicoMite-Firmware (aus
welchem Grund auch immer) zur Eingabeaufforderung zurückkehrt, wird der Benutzer an der Konsole
aufgefordert, die PIN-Nummer einzugeben. Ohne die richtige PIN kann der Benutzer nicht zur Befehlszeile
gelangen und hat nur die Möglichkeit, die richtige PIN einzugeben oder die PicoMite-Firmware neu zu starten.
Nach dem Neustart benötigt der Benutzer weiterhin die richtige PIN, um auf die Befehlszeile zugreifen zu
können.

Da ein Eindringling die Befehlszeile nicht erreichen kann, kann er kein Programm auflisten oder kopieren, das
Programm nicht ändern und auch keine Änderungen an MMBasic oder der PicoMite-Firmware vornehmen.
Einmal festgelegt, kann die PIN nur durch Eingabe der ursprünglich festgelegten korrekten PIN entfernt
werden. Wenn die Nummer verloren geht, besteht die einzige Möglichkeit zur Wiederherstellung darin, die
PicoMite-Firmware neu zu laden (wodurch das Programm und alle Optionen gelöscht werden).

Es gibt andere zeitaufwändige Möglichkeiten, auf die Daten zuzugreifen (z. B. die Verwendung eines
Programmiergeräts zur Überprüfung des Flash-Speichers), daher sollte dies nicht als ultimative
Sicherheitsmaßnahme angesehen werden, aber es wirkt als erhebliche Abschreckung.

Die Bibliothek-
Mit der LIBRARY-Funktion kannst du BASIC-Funktionen, Unterprogramme und eingebettete Schriftarten
erstellen und sie zu MMBasic hinzufügen, um sie dauerhaft und zu einem Teil der Sprache zu machen. Du hast
zum Beispiel vielleicht eine Reihe von Unterprogrammen und Funktionen geschrieben, die komplexe
Bitmanipulationen durchführen. Diese könnten als Bibliothek gespeichert werden, Teil von MMBasic werden
und genauso funktionieren wie andere integrierte Funktionen, die bereits Teil der Sprache sind. Eine
eingebettete Schriftart kann auf die gleiche Weise hinzugefügt und wie eine normale Schriftart verwendet
werden.

Um Komponenten in die Bibliothek zu installieren, musst du die Routinen wie normale BASIC-Routinen
schreiben und testen. Wenn sie richtig funktionieren, kannst du den Befehl LIBRARY SAVE verwenden.
Dadurch werden die Routinen (so viele du möchtest) in einen nicht sichtbaren Teil des Flash-Speichers
übertragen, wo sie für jedes BASIC-Programm verfügbar sind, aber nicht angezeigt werden, wenn der Befehl
LIST verwendet wird, und nicht gelöscht werden, wenn ein neues Programm geladen oder NEW verwendet
wird. Die gespeicherten Unterprogramme und Funktionen können jedoch aus dem Hauptprogramm heraus
aufgerufen und sogar an der Befehlszeile ausgeführt werden (genau wie ein integrierter Befehl oder eine
integrierte Funktion).

Einige Punkte, die zu beachten sind:

 Bibliotheksroutinen funktionieren genau wie normaler BASIC-Code und können aus beliebig vielen
Unterprogrammen, Funktionen, eingebetteten C-Routinen und Schriftarten bestehen. Der einzige
Unterschied besteht darin, dass sie bei der Auflistung eines Programms nicht angezeigt und beim Laden
eines neuen Programms nicht gelöscht werden.

 Bibliotheksroutinen können globale Variablen erstellen und darauf zugreifen und unterliegen denselben
Regeln wie das Hauptprogramm – zum Beispiel müssen sie OPTION EXPLICIT beachten, wenn es
gesetzt ist.

 Wenn die Routinen in die Bibliothek übertragen werden, komprimiert MMBasic sie, indem Kommentare,
zusätzliche Leerzeichen, Leerzeilen und die Hex-Codes in eingebetteten C-Routinen und Schriftarten
entfernt werden. Dadurch wird der Bibliotheksspeicherplatz effizient genutzt, insbesondere beim Laden
großer Schriftarten. Nach dem Speichern wird der Programmbereich gelöscht.

 Du kannst den Befehl LIBRARY SAVE mehrmals verwenden. Bei jedem Speichern wird der neue Inhalt
des Programmbereichs an den bereits vorhandenen Code in der Bibliothek angehängt.

 Du kannst Zeilennummern in der Bibliothek verwenden, aber du kannst keine Zeilennummer in einer
ansonsten leeren Zeile als Ziel für einen GOTO-Befehl usw. verwenden. Das liegt daran, dass der Befehl
LIBRARY SAVE alle Leerzeilen entfernt.

 Du kannst READ-Befehle in der Bibliothek verwenden, aber sie lesen standardmäßig DATA-
Anweisungen im Hauptprogrammspeicher. Wenn du aus DATA-Anweisungen in der Bibliothek lesen
möchtest, musst du vor dem ersten READ-Befehl den Befehl RESTORE verwenden. Dadurch wird der
Zeiger auf den Bibliotheksbereich zurückgesetzt.

PicoMite Benutzerhandbuch Seite 25

 Die Bibliothek wird im Programm-Flash-Speicher Slot 3 gespeichert, der dann nicht mehr für die
Speicherung eines Programms verfügbar ist, wenn LIBRARY SAVE verwendet wird.

 Mit dem Befehl LIBRARY LIST kannst du den Inhalt der Bibliothek anzeigen, da dieser Befehl den
Inhalt des Bibliotheksbereichs auflistet.

 Der Inhalt der LIBRARY kann mit LIBRARY DISK SAVE fname$ auf der Festplatte gespeichert und
mit LIBRARY DISK LOAD fname$ wiederhergestellt werden.

Um die Routinen im Bibliotheksbereich zu löschen, benutzt du den Befehl LIBRARY DELETE. Dadurch wird
der Speicherplatz freigegeben und der von der Bibliothek belegte Flash-Speicherplatz Slot 3 steht wieder für
die Speicherung normaler Programme zur Verfügung. Die einzige andere Möglichkeit, eine Bibliothek zu
löschen, ist die Verwendung von OPTION RESET.

Programminitialisierung
Die Bibliothek kann auch Code enthalten, der nicht in einer Subroutine oder Funktion enthalten ist. Dieser
Code (falls vorhanden) wird automatisch ausgeführt, bevor ein Programm gestartet wird (d. h. über den Befehl
RUN). Diese Funktion kann verwendet werden, um Konstanten zu initialisieren oder MMBasic auf bestimmte
Weise einzurichten. Wenn Sie beispielsweise einige Konstanten festlegen möchten, können Sie die folgenden
Zeilen in den Bibliothekscode einfügen:

CONST TRUE = 1
CONST FALSE = 0

Die Bezeichner TRUE und FALSE wurden der Sprache hinzugefügt und stehen jedem Programm, das
ausgeführt wird, zur Verfügung.

MM.STARTUP
Manchmal musst du beim ersten Einschalten Code ausführen, zum Beispiel um Hardware zu initialisieren,
Optionen einzustellen oder ein benutzerdefiniertes Startbanner zu drucken. Dazu kannst du eine Subroutine mit
dem Namen MM.STARTUP erstellen. Wenn die PicoMite-Firmware zum ersten Mal eingeschaltet oder
zurückgesetzt wird, sucht sie nach dieser Subroutine und führt sie einmal aus, wenn sie gefunden wird.

Wenn zum Beispiel eine Echtzeituhr an den Raspberry Pi Pico angeschlossen ist, könnte das Programm den
folgenden Code enthalten:

SUB MM.STARTUP
 RTC GETTIME
END SUB

Dadurch wird die interne Uhr in MMBasic bei jedem Einschalten oder Zurücksetzen auf die aktuelle Uhrzeit
eingestellt.

Nachdem der Code in MM.STARTUP ausgeführt wurde, fährt MMBasic mit der Ausführung des restlichen
Programms im Programmspeicher fort. Wenn kein weiterer Code vorhanden ist, kehrt MMBasic zur
Eingabeaufforderung zurück.

Beachte, dass du MM.STARTUP nicht für allgemeine Einstellungen von MMBasic (wie das Dimensionieren
von Arrays, das Öffnen von Kommunikationskanälen usw.) vor dem Ausführen eines Programms verwenden
solltest. Der Grund dafür ist, dass MMBasic bei Verwendung des Befehls RUN zunächst den Status des
Interpreters löscht, um einen Neuanfang zu ermöglichen.

MM.PROMPT
Wenn eine Subroutine mit diesem Namen vorhanden ist, wird sie automatisch von MMBasic ausgeführt, anstatt
die Befehlszeile anzuzeigen. Dies kann verwendet werden, um eine benutzerdefinierte Eingabeaufforderung
anzuzeigen, Farben festzulegen, Variablen zu definieren usw., die alle in der Befehlszeile aktiv sind.

Beachte, dass MMBasic alle Variablen und I/O-Pin-Einstellungen löscht, wenn ein Programm ausgeführt wird,
sodass alle in dieser Subroutine festgelegten Einstellungen nur für Befehle gelten, die an der Befehlseingabe (d.
h. im Sofortmodus) eingegeben werden.

Seite26 PicoMite-Benutzerhandbuch

Als Beispiel zeigt das Folgende eine benutzerdefinierte Eingabeaufforderung an:
SUB MM.PROMPT
 PRINT TIME$ "> ";
END SUB

Beachte, dass Konstanten zwar definiert werden können, aber nicht sichtbar sind, weil eine in einer Subroutine
definierte Konstante nur für diese Subroutine gilt. DIM erstellt aber globale Variablen, die stattdessen
verwendet werden sollten.

MM.END
Wenn im Programm eine Unterroutine namens MM.END vorhanden ist, wird sie immer dann ausgeführt, wenn
das Programm mit einem tatsächlichen oder implizierten END-Befehl endet. Sie wird nicht ausgeführt, wenn
das Programm mit Strg-C beendet wird.

Der optionale Parameter „noend” des END-Befehls kann verwendet werden, um die Ausführung der
Unterroutine MM.END bei Bedarf zu blockieren (weitere Informationen findest du unter dem END-Befehl).

PicoMite Benutzerhandbuch Seite 27

Vollbild-Editor-

Eine wichtige Funktion zur Steigerung der Produktivität ist der integrierte Vollbild-Editor. Wenn er läuft, sieht
er so aus:

Der Editor funktioniert mit:

 Der seriellen Konsole mit einem VT100-unterstützten Terminalemulator (wie Tera Term) in allen
Versionen.

 Der VGA- oder HDMI-Videoausgang (bei Versionen mit dieser Funktion).

 Einem angeschlossenen LCD-Panel, das mit OPTION LCDPANEL CONSOLE konfiguriert wurde.

Der Editor ist eine super produktive Methode zum Schreiben von Programmen. Mit dem Befehl EDIT kannst
du dein Programm eingeben und dann mit der Taste F2 speichern und ausführen. Wenn dein Programm mit
einem Fehler stoppt, drückst du die Funktionstaste F4 an der Eingabeaufforderung, um den Editor zu laden und
den Cursor an die Zeile zu setzen, die den Fehler verursacht hat. Dieser Zyklus aus
Bearbeiten/Ausführen/Bearbeiten geht echt schnell.

Wenn du schon mal einen Editor wie Windows Notepad benutzt hast, wirst du feststellen, dass die Bedienung
dieses Editors vertraut ist. Mit den Pfeiltasten kannst du den Cursor im Text bewegen, mit Home und End
gelangst du zum Anfang oder Ende der Zeile. Mit „Bild auf“ und „Bild ab“ machst du genau das, was die
Namen sagen. Mit der Entf-Taste löschst du das Zeichen am Cursor und mit der Rücktaste das Zeichen davor.
Mit der Einfügen-Taste wechselst du zwischen Einfügen und Überschreiben. Die einzige ungewöhnliche
Tastenkombination ist, dass du mit zweimaligem Drücken der Home-Taste zum Anfang des Programms und
mit zweimaligem Drücken der Ende-Taste zum Ende gelangst.

Am besten lernst du die Verwendung des Editors, indem du ihn einfach startest und damit experimentierst.

Bearbeitungsfunktionen

Wenn der Editor startet, steht der Cursor an der letzten Bearbeitungsposition oder, falls dein Programm wegen
eines Fehlers abgebrochen wurde, an der Zeile, die den Fehler verursacht hat. Unten auf dem Bildschirm zeigt
die Statuszeile Details wie die aktuelle Cursorposition und die vom Editor unterstützten Standardfunktionen an.

Im Einzelnen sind dies folgende Funktionen:

ESC Damit verwirft der Editor alle Änderungen und kehrt zur Eingabeaufforderung
zurück, ohne dass sich der Programmspeicher verändert hat. Wenn du den Text

Seite28 PicoMite-Benutzerhandbuch

geändert hast, wirst du gefragt, ob du deine Änderungen wirklich verwerfen
möchtest.

F1: SPEICHERN Damit wird der Programm-Speicher gespeichert und du kommst zurück zur
Eingabeaufforderung.

F2: AUSFÜHREN Damit wird der Speicherstand gespeichert und das Programm sofort ausgeführt.

F3: SUCHEN Hier kannst du den Text eingeben, den du suchen willst. Wenn du die Eingabetaste
drückst, springt der Cursor an den Anfang des ersten gefundenen Eintrags.

F4: MARK Das wird weiter unten genauer erklärt.

F5: EINFÜGEN Damit wird der zuvor ausgeschnittene oder kopierte Text (siehe unten) an der
aktuellen Cursorposition eingefügt.

F6: ERNEUT SUCHEN Wenn du die Suchfunktion benutzt hast, kannst du die Suche mit F6 wiederholen
(Shift-F3 geht auch).

F7: ERSETZEN Wenn der Cursor nach F3 oder F6 steht, öffnet sich ein Dialogfeld, in dem du
direkt eine Zeichenfolge in die Zwischenablage eingeben und durch Drücken der
Eingabetaste die gesuchte Zeichenfolge ersetzen kannst.

F8: NOCHMAL ERSETZEN Wenn der Cursor nach F3 oder F6 steht, ersetzt das System die gesuchte
Zeichenfolge durch den Inhalt der Zwischenablage.

F9: EINFÜGEN Du wirst nach einem Dateinamen gefragt und wenn du die Eingabetaste drückst,
wird die Datei an der aktuellen Cursorposition eingefügt.

F10: CLIPBOARD SPEICHERN Du wirst nach einem Dateinamen gefragt und wenn du die
Eingabetaste drückst, wird der Inhalt der Zwischenablage (falls vorhanden) in
dieser Datei gespeichert. Sieh dir den Markierungsmodus unten an.

Markierungsmodus

Wenn du die Markierungstaste (F4) drückst, geht der Editor in den Markierungsmodus, in dem du Text
ausschneiden oder in die Zwischenablage kopieren oder Text löschen oder speichern kannst.

Im Markierungsmodus kannst du mit den Pfeiltasten Text markieren, der dann invers hervorgehoben wird.
Wenn du den Anfang oder das Ende des Bildschirms erreichst, markieren die Pfeiltasten weiterhin Text,
während der Bildschirm scrollt. Das funktioniert auch mit den Tasten „Bild auf“ und „Bild ab“.

Im Markierungsmodus ändert sich die Statuszeile und zeigt die in diesem Modus verfügbaren Funktionen an.
Das sind:

ESC Verlasse den Markierungsmodus, ohne etwas zu ändern.

F4: AUSSCHNEIDEN Kopiere den markierten Text in die Zwischenablage und entferne ihn aus dem
Programm.

F5: COPY Kopiere den markierten Text einfach in die Zwischenablage.

F10: SPEICHERN Frag nach einem Dateinamen und speicher den markierten Text in der Datei, wenn die
Eingabetaste gedrückt wird.

LÖSCHEN Lösch den markierten Text, ohne die Zwischenablage zu verändern.

Das Ausschneiden oder Kopieren ist auf maximal 2048 Zeichen begrenzt.

Alternative Tasten

Du kannst auch Steuertasten anstelle der oben aufgeführten Funktionstasten verwenden. Diese Steuertasten
sind:

PicoMite Benutzerhandbuch Seite 29

LINKS Strg-S RECHTS Strg-D OBEN Strg-E DOWN Strg-X
HOME Strg-U END Strg-K Bild auf Strg-P Bild nach unten

Strg-L
Entf Strg-] EINFÜGEN Strg-N F1 Strg-Q F2 Strg-
W
F3 Strg-R F4 Strg-T F5 Strg-Y F6 Strg-G
F7 Strg-F F8 Strg-I

Lange Zeilen

Bei langen Zeilen wird nur der erste Teil der Zeile bis zum rechten Rand des Bildschirms angezeigt. Der Rest
der Zeile, der über den rechten Rand hinausgeht, ist zwar noch da, wird aber nicht angezeigt und kann nicht
bearbeitet werden. Wenn du eine sehr lange Zeile bearbeiten willst, kannst du den Cursor nahe am rechten
Rand positionieren und die Eingabetaste drücken. Dadurch wird die lange Zeile in zwei Teile geteilt, die beide
separat bearbeitet werden können. Um die Zeile wieder zusammenzufügen, kannst du mit der Entf- oder
Rücktaste den zuvor eingefügten Zeilenumbruch entfernen.

Alternativ kannst du vor dem Aufrufen des Editors die Fortsetzungszeilen aktivieren (OPTION
CONTINUATION LINES ON). Damit kannst du am Ende einer Zeile ein Leerzeichen gefolgt von einem
Unterstrich verwenden, um anzuzeigen, dass die nächste Zeile eine Fortsetzung ist und für die Ausführung des
Programms zusammengefügt werden soll. Die Zusammenfügung erfolgt beim Speichern der Datei, und beim
erneuten Bearbeiten werden lange Zeilen automatisch geteilt, wenn die Datei in den Editor eingelesen wird. Die
Zeilenumbrüche sind möglicherweise nicht an derselben Stelle, aber der Editor versucht, sie an sinnvollen
Stellen (am Ende von Wörtern usw.) zu platzieren. Es gibt keine Einschränkungen hinsichtlich der Platzierung
von Fortsetzungszeichen. Sie können sich beispielsweise in der Mitte einer Zeichenfolge in Anführungszeichen
befinden. Die Begrenzung auf maximal 255 Zeichen in einer verketteten Zeile gilt weiterhin, und der Editor
lässt dich nicht aussteigen, wenn eine Zeile zu lang ist.

Verwendung einer Maus
Versionen der PicoMite-Firmware, die VGA/HDMI unterstützen (sowohl in der RP2040- als auch in der
RP2350-Version), unterstützen auch die Verwendung einer PS2- oder USB-Maus im Editor. Details zum
Anschließen einer Maus findest du unter der Überschrift „Tastatur/Maus/Gamepad“ weiter unten in diesem
Handbuch.

Wenn du den Editor mit angeschlossener Maus startest und dich im Videomodus 1 mit aktivierter
Farbcodierung befindest, siehst du ein Zeichen, das auf weißem Hintergrund rot hervorgehoben ist. Diese
Markierung kann mit der Maus verschoben werden. Durch Klicken mit der linken Maustaste wird der
Bearbeitungscursor an diese Position verschoben (d. h. wie bei Verwendung der Cursortasten). Ein Klick mit
der rechten Maustaste entspricht dem Drücken der Taste F4 auf der Tastatur, und ein Klick auf das Scrollrad
entspricht der Taste F5.

Das heißt, im normalen Modus des Editors kannst du den Mauszeiger positionieren und durch einen
Rechtsklick wechselt der Editor in den Markierungsmodus (Ausschneiden und Kopieren), wobei der Cursor an
der Position des Mauszeigers beginnt. Wenn du dann die Maus bewegst und mit der linken Maustaste klickst,
werden die Zeichen von der Markierungsposition bis zur neuen Mausposition markiert. Ein Rechtsklick (wie
F4) schneidet den markierten Bereich in die Zwischenablage, während ein Klick auf das Scrollrad (wie F5) den
markierten Text in die Zwischenablage kopiert, ohne ihn aus dem Text zu löschen. Beide Aktionen bringen den
Editor wieder in den normalen Modus.

Im normalen Modus kannst du den Inhalt der Zwischenablage in den Text einfügen, indem du die Maus an die
neue Position bewegst und auf das Scrollrad klickst (wie F5).

Farbcodierte Editoranzeige

Der Editor kann das bearbeitete Programm mit Schlüsselwörtern, Zahlen und Kommentaren in verschiedenen
Farben farblich kennzeichnen. Diese Funktion kann über die Eingabeaufforderung mit den folgenden Befehlen
ein- oder ausgeschaltet werden:

OPTION COLOURCODE ON
oder

OPTION COLOURCODE OFF

Diese Option wird im nichtflüchtigen Speicher gespeichert und beim Start automatisch angewendet.

Seite30 PicoMite-Benutzerhandbuch

Variablen und Ausdrücke

In MMBasic wird bei Befehlsnamen, Funktionsnamen, Bezeichnungen, Variablennamen, Dateinamen usw.
nicht zwischen Groß- und Kleinschreibung unterschieden, sodass „Run” und „RUN” gleich sind und „dOO”
und „Doo” sich auf dieselbe Variable beziehen.

Variablen
Variablen können mit einem Buchstaben oder einem Unterstrich beginnen und beliebige Buchstaben, Zahlen,
Punkte (.) und Unterstriche (_) enthalten. Sie können bis zu 31 Zeichen lang sein.

Ein Variablenname oder eine Bezeichnung darf nicht mit einem Befehl, einer Funktion, einer der neun PIO-
Anweisungen (IN, OUT, JMP, WAIT, PUSH, PULL, MOV, IRQ, SET) oder einem der folgenden
Schlüsselwörter übereinstimmen: THEN, ELSE, GOTO, GOSUB, TO, STEP, FOR, WHILE, UNTIL, LOAD,
MOD, NOT, AND, OR, XOR, AS.
Beispielsweise ist step = 5 nicht zulässig, da STEP ein Schlüsselwort ist.

MMBasic kann drei Arten von Variablen:

1. Doppelte Genauigkeit mit Gleitkomma.
Damit kannst du Zahlen mit Dezimalstellen und Bruchteilen speichern (z. B. 45,386), aber wenn du mehr
als 14 Stellen nimmst, wird es ungenauer. Gleitkommavariablen werden durch Hinzufügen des
Suffixes „!“ zum Variablennamen angegeben (z. B. i!, nbr! usw.). Sie sind auch die Standardeinstellung,
wenn eine Variable ohne Suffix erstellt wird (z. B. i, nbr usw.).

2. 64-Bit-Ganzzahl mit Vorzeichen.
Diese können positive oder negative Zahlen mit bis zu 19 Dezimalstellen ohne Genauigkeitsverlust
speichern, aber sie können keine Bruchteile (d. h. den Teil nach dem Dezimalpunkt) speichern. Sie
werden angegeben, indem man das Suffix „%” an den Namen einer Variablen anhängt. Zum Beispiel i%,
nbr% usw.

3. Eine Zeichenfolge.
Eine Zeichenkette speichert eine Folge von Zeichen (z. B. „Tom”). Jedes Zeichen in der Zeichenkette
wird als 8-Bit-Zahl gespeichert und kann daher einen Dezimalwert von 0 bis 255 haben. Die Namen von
Zeichenkettenvariablen enden mit dem Symbol „$” (z. B. name$, s% usw.). Zeichenketten können bis zu
255 Zeichen lang sein.

Beachte, dass es nicht erlaubt ist, denselben Variablennamen für verschiedene Typen zu verwenden. Die
Verwendung von nbr! und nbr% im selben Programm würde zum Beispiel einen Fehler verursachen.

Die meisten Programme verwenden Fließkommavariablen für arithmetische Operationen, da diese mit den in
typischen Situationen verwendeten Zahlen umgehen können und bei Divisionen und Brüchen intuitiver sind als
Ganzzahlen. Wenn Sie sich also nicht um die Details kümmern möchten, verwenden Sie immer
Fließkommazahlen.

Konstanten
Numerische Konstanten können mit einer Ziffer (0-9) für eine Dezimalkonstante, mit &H für eine
Hexadezimalzahl, mit &O für eine Oktalzahl oder mit &B für eine Binärzahl beginnen. Zum Beispiel entspricht
&B1000 der Dezimalkonstante 8. Konstanten, die mit &H, &O oder &B beginnen, werden immer als 64-Bit-
Ganzzahlkonstanten ohne Vorzeichen behandelt.

Dezimalen können mit einem Minuszeichen (-) oder Pluszeichen (+) beginnen und mit „E” gefolgt von einer
Exponentialzahl enden, um die Exponentialdarstellung anzuzeigen. Zum Beispiel entspricht 1,6E+4 dem Wert
16000.

Wenn eine konstante Zahl verwendet wird, wird angenommen, dass es sich um eine Ganzzahl handelt, wenn
kein Dezimalpunkt oder Exponent verwendet wird. Zum Beispiel wird 1234 als Ganzzahl interpretiert, während
1234.0 als Gleitkommazahl interpretiert wird.

Zeichenfolgenkonstanten müssen in doppelte Anführungszeichen („“) gesetzt werden. Beispiel: „Hello
World“.

OPTION DEFAULT
Eine Variable kann ohne Suffix (d. h. !, % oder $) verwendet werden. In diesem Fall verwendet MMBasic den
Standardtyp „Gleitkomma”. So wird zum Beispiel die folgende Zeile eine Gleitkommavariable erstellen:

Nbr = 1234

PicoMite Benutzerhandbuch Seite 31

Der Standardtyp kann aber mit dem Befehl OPTION DEFAULT geändert werden. Mit OPTION DEFAULT
INTEGER wird zum Beispiel festgelegt, dass alle Variablen ohne bestimmten Typ Ganzzahlvariablen sind. So
wird mit dem folgenden Befehl eine Ganzzahlvariable erstellt:

OPTION DEFAULT INTEGER
Nbr = 1234

Der Standardwert kann auf FLOAT (das ist der Standardwert, wenn ein Programm ausgeführt wird),
INTEGER, STRING oder NONE gesetzt werden. Im letzteren Fall müssen alle Variablen explizit typisiert
werden, sonst kommt es zu einem Fehler.

Der Befehl OPTION DEFAULT kann an beliebiger Stelle im Programm platziert und jederzeit geändert
werden. Es empfiehlt sich jedoch, ihn am Anfang des Programms zu platzieren und unverändert zu lassen.

OPTION EXPLICIT
Standardmäßig erstellt MMBasic automatisch eine Variable, wenn sie zum ersten Mal referenziert wird. So
wird mit Nbr = 1234 die Variable erstellt und gleichzeitig auf den Wert 1234 gesetzt. Dies ist für kurze
und schnelle Programme praktisch, kann jedoch in großen Programmen zu subtilen und schwer zu findenden
Fehlern führen. In der dritten Zeile dieses Fragments wurde die Variable Nbr beispielsweise fälschlicherweise
als Nbrs geschrieben. Infolgedessen würde die Variable Nbrs mit dem Wert Null erstellt und der Wert von
Total wäre falsch.

Nbr = 1234
Incr = 2
Total = Nbrs + Incr

Der Befehl OPTION EXPLICIT weist MMBasic an, Variablen nicht automatisch zu erstellen. Stattdessen
müssen sie vor ihrer Verwendung explizit mit den Befehlen DIM, LOCAL oder STATIC (siehe unten) definiert
werden. Die Verwendung dieses Befehls wird empfohlen, um eine gute Programmierpraxis zu unterstützen.
Wenn er verwendet wird, sollte er am Anfang des Programms platziert werden, bevor Variablen verwendet
werden.

DIM und LOCAL
Die Befehle DIM und LOCAL können zum Definieren einer Variablen und zum Festlegen ihres Typs
verwendet werden und sind obligatorisch, wenn der Befehl OPTION EXPLICIT verwendet wird.

Der Befehl DIM erstellt eine globale Variable, die im gesamten Programm, einschließlich innerhalb von
Unterprogrammen und Funktionen, sichtbar ist und verwendet werden kann. Wenn die Definition jedoch nur
innerhalb eines Unterprogramms oder einer Funktion sichtbar sein soll, sollte der Befehl LOCAL am Anfang
des Unterprogramms oder der Funktion verwendet werden. LOCAL hat genau die gleiche Syntax wie DIM.

Wenn LOCAL verwendet wird, um eine Variable mit dem gleichen Namen wie eine globale Variable
anzugeben, wird die globale Variable für die Unterroutine oder Funktion ausgeblendet, und alle Verweise auf
die Variable beziehen sich nur auf die durch den Befehl LOCAL definierte Variable. Alle mit LOCAL
erstellten Variablen verschwinden, wenn das Programm die Unterroutine verlässt.

Auf der einfachsten Ebene können DIM und LOCAL verwendet werden, um eine oder mehrere Variablen
basierend auf ihrem Typ-Suffix oder der zu diesem Zeitpunkt gültigen OPTION DEFAULT zu definieren. Zum
Beispiel:

DIM nbr%, s$

Sie können aber auch verwendet werden, um eine oder mehrere Variablen mit einem bestimmten Typ zu
definieren, wenn das Typ-Suffix nicht verwendet wird:

DIM INTEGER nbr, nbr2, nbr3 usw.

In diesem Fall werden nbr, nbr2, nbr3 usw. alle als Ganzzahlen erstellt. Wenn du die Variable in einem
Programm benutzt, musst du das Typ-Suffix nicht angeben. Zum Beispiel funktioniert MyStr im folgenden
Beispiel perfekt als String-Variable:

DIM STRING MyStr
MyStr = "Hallo"

Die Befehle DIM und LOCAL akzeptieren auch die Microsoft-Praxis, den Typ der Variablen nach der
Variablen mit dem Schlüsselwort „AS” anzugeben. Zum Beispiel:

DIM nbr AS INTEGER, s AS STRING

Seite32 PicoMite-Benutzerhandbuch

In diesem Fall wird der Typ jeder Variablen einzeln festgelegt (nicht als Gruppe, wie wenn der Typ vor der
Liste der Variablen steht).

Die Variablen können auch bei ihrer Definition initialisiert werden. Zum Beispiel:
DIM INTEGER a = 5, b = 4, c = 3
DIM s$ = "World", i% = &H8FF8F
DIM msg AS STRING = "Hallo" + " " + s$

Der Wert, mit dem die Variable initialisiert wird, kann ein Ausdruck sein, der auch benutzerdefinierte
Funktionen enthalten kann.

Die Befehle DIM oder LOCAL werden auch zum Definieren eines Arrays verwendet, und alle oben
aufgeführten Regeln gelten auch für die Definition eines Arrays. Beispiel:

DIM INTEGER nbr(10), nbr2, nbr3(5,8)

Bei der Initialisierung eines Arrays werden die Werte als durch Kommas getrennte Werte aufgelistet, wobei die
gesamte Liste in Klammern steht. Zum Beispiel:

DIM INTEGER nbr(5) = (11, 12, 13, 14, 15, 16)
oder

DIM days(7) AS STRING = ("","Sun","Mon","Tue","Wed","Thu","Fri","Sat")

STATIC
Innerhalb einer Subroutine oder Funktion ist es manchmal nützlich, eine Variable zu erstellen, die nur innerhalb
der Subroutine oder Funktion sichtbar ist (wie eine LOCAL-Variable), aber ihren Wert zwischen den Aufrufen
der Subroutine oder Funktion beibehält.

Dies kannst du mit dem Befehl STATIC erreichen. STATIC kann nur innerhalb einer Subroutine oder Funktion
verwendet werden und hat dieselbe Syntax wie LOCAL und DIM. Der Unterschied besteht darin, dass ihr Wert
zwischen den Aufrufen der Subroutine oder Funktion beibehalten wird (d. h. sie wird beim zweiten und den
folgenden Aufrufen nicht initialisiert).

Wenn du zum Beispiel die folgende Subroutine hast und sie wiederholt aufrufst, würde der erste Aufruf 5, der
zweite 6, der dritte 7 usw. ausgeben.

SUB Foo
 STATIC var = 5
 PRINT var
 var = var + 1
END SUB

Beachte, dass die Initialisierung der statischen Variablen auf 5 (wie im obigen Beispiel) nur beim ersten Aufruf
der Subroutine wirkt. Bei späteren Aufrufen wird die Initialisierung ignoriert, da die Variable schon beim
ersten Aufruf erstellt wurde.

Wie bei DIM und LOCAL können die mit STATIC erstellten Variablen Float-Werte, Ganzzahlen oder
Zeichenfolgen und Arrays davon mit oder ohne Initialisierung sein. Die Länge des von STATIC erstellten
Variablennamens und die Länge des Unterprogramm- oder Funktionsnamens dürfen zusammen nicht mehr als
31 Zeichen betragen.

CONST
Oft ist es nützlich, einen Bezeichner zu definieren, der einen Wert repräsentiert, ohne dass die Gefahr besteht,
dass der Wert versehentlich geändert wird – was passieren kann, wenn Variablen für diesen Zweck verwendet
werden (diese Vorgehensweise begünstigt eine weitere Klasse von schwer zu findenden Fehlern).

Mit dem Befehl CONST kannst du einen Bezeichner erstellen, der wie eine Variable funktioniert, aber auf
einen Wert gesetzt ist, der nicht geändert werden kann. Zum Beispiel:

CONST InputVoltagePin = 31
CONST MaxValue = 2.4

Die Bezeichner können dann in einem Programm verwendet werden, wo sie für den gelegentlichen Leser
sinnvoller sind als einfache Zahlen. Zum Beispiel:

IF PIN(InputVoltagePin) > MaxValue THEN SoundAlarm

In einer Zeile kannst du mehrere Konstanten erstellen:
CONST InputVoltagePin = 31, MaxValue = 2.4, MinValue = 1.5

PicoMite Benutzerhandbuch Seite 33

Der Wert, der zum Initialisieren der Konstante verwendet wird, wird beim Erstellen der Konstante ausgewertet
und kann ein Ausdruck sein, der benutzerdefinierte Funktionen enthält.

Der Typ der Konstante wird aus dem ihr zugewiesenen Wert abgeleitet; so ist beispielsweise MaxValue oben
eine Gleitkommakonstante, da 2,4 eine Gleitkommazahl ist. Der Typ einer Konstante kann auch explizit durch
Verwendung eines Typ-Suffixes (d. h. !, % oder $) festgelegt werden, muss jedoch mit dem ihr zugewiesenen
Wert übereinstimmen.

Sonderzeichen in Zeichenfolgen

Spezielle, nicht druckbare Zeichen können mit dem Backslash (d. h. \) als Escape-Symbol in
Zeichenfolgenkonstanten eingefügt werden. Um diese Funktion zu aktivieren, muss der Befehl OPTION
ESCAPE am Anfang des Programms stehen.

Dies sind die gültigen Escape-Sequenzen:

Hexadezim
alwert

Beschreibung

\a 07 Alarm (Piepton, Glocke)
\b 08 Rücktaste
\e 1B Escape-Zeichen
\f 0C Seitenvorschub
\n 0A Zeilenumbruch (Line Feed)
\r 0D Wagenrücklauf
\q 22 Anführungszeichen
\t 09 Horizontaler Tabulator
\v 0B Vertikale Tabulator
\\ 5C Backslash

\nnn beliebig Das Byte, dessen Wert durch nnn als Dezimalzahl angegeben wird
&hh beliebig Das Byte, dessen Wert durch hh angegeben wird, wird als Hexadezimalzahl

interpretiert.

Zum Beispiel wird das Folgende die Wörter „Hello“ und „World“ in separaten Zeilen ausgeben:
OPTION ESCAPE
PRINT „Hallo\r\nWelt”

Ausdrücke und Operatoren

MMBasic wertet einen mathematischen Ausdruck nach den üblichen mathematischen Regeln aus. Zum
Beispiel werden Multiplikation und Division zuerst gemacht, dann kommen Addition und Subtraktion. Das
sind die Vorrangregeln, die weiter unten genauer erklärt werden.

Das heißt, dass 2 + 3 * 6 zu 20 führt, genauso wie 5 * 4 und auch 10 + 4 * 3 – 2.

Wenn du den Interpreter dazu bringen willst, Teile des Ausdrucks zuerst zu berechnen, kannst du diesen Teil
des Ausdrucks in Klammern setzen. Zum Beispiel ergibt (10 + 4) * (3 – 2) 14 und nicht 20, wie es ohne
Klammern der Fall gewesen wäre. Die Verwendung von Klammern verlangsamt das Programm nicht
nennenswert, daher solltest du sie großzügig einsetzen, wenn die Möglichkeit besteht, dass MMBasic deine
Absicht falsch interpretiert.

Die folgenden Operatoren sind in MMBasic in der Reihenfolge ihrer Priorität implementiert. Operatoren, die
auf derselben Ebene stehen (z. B. + und -), werden in der Reihenfolge ihrer Erscheinung in der Programmzeile
von links nach rechts verarbeitet.

Seite34 PicoMite-Benutzerhandbuch

Arithmetische Operatoren:

^ Potenzierung (z. B. b^n bedeutet bn)

* / \ MOD Multiplikation, Division, ganzzahlige Division und Modulo (Rest)

+ - Addition und Subtraktion

Verschiebungsoperatoren:

x << y x >> y Die funktionieren auf eine besondere Art. << heißt, dass der Wert,
den du zurückbekommst, der Wert von x ist, der um y Bits nach
links verschoben wurde, während >> dasselbe bedeutet, nur nach
rechts verschoben. Das sind ganzzahlige Funktionen, und alle Bits,
die rausgeschoben werden, werden weggeworfen, und alle Bits, die
reingeschoben werden, werden auf Null gesetzt.

Logische Operatoren:

NOT INV Kehren den logischen Wert auf der rechten Seite um (z. B.
NOT(a=b) ist a<>b)

oder bitweise Umkehrung des Werts auf der rechten Seite (z. B. a
= INV b)

<> < > <= =<
>= =>

Ungleichheit, kleiner als, größer als, kleiner oder gleich, kleiner oder
gleich (alternative Version), größer oder gleich, größer oder gleich
(alternative Version)

= Gleichheit

UND ODER XOR Konjunktion, Disjunktion, exklusives Oder

Aus Gründen der Kompatibilität mit Microsoft sind die Operatoren AND, OR und XOR ganzzahlige
Bitoperatoren. Zum Beispiel gibt PRINT (3 AND 6) die Zahl 2 aus. Weil diese Operatoren sowohl als logische
Operatoren (z. B. IF a=5 AND b=8 THEN …) als auch als Bitweise-Operatoren (z. B. y% = x% AND
&B1010) funktionieren können, wird der Interpreter verwirrt, wenn sie im selben Ausdruck gemischt werden.
Also, bewerte logische und bitweise Ausdrücke immer in separaten Ausdrücken.

Die anderen logischen Operationen ergeben die Ganzzahl 0 (Null) für falsch und 1 für wahr. Die Anweisung
PRINT 4 >= 5 die Zahl Null aus und der Ausdruck A = 3 > 2 speichert +1 in A.

Der NOT-Operator kehrt den logischen Wert auf seiner rechten Seite um (es handelt sich nicht um eine
bitweise Umkehrung), während der INV-Operator eine bitweise Umkehrung durchführt. Beide haben die
höchste Priorität, sodass sie fest mit dem nächsten Wert verbunden sind. Für die normale Verwendung von
NOT oder INV sollte der zu verarbeitende Ausdruck in Klammern gesetzt werden. Beispiel:
 IF NOT (A = 3 OR A = 8) THEN …

Zeichenfolgenoperatoren:

+ Zwei Zeichenfolgen verbinden

<> < > <= =<
>= =>

Ungleichheit, kleiner als, größer als, kleiner oder gleich, kleiner oder
gleich (alternative Version), größer oder gleich, größer oder gleich
(alternative Version) in der Reihenfolge des ASCII-Werts.

= Gleichheit

Bei der Vergleichung von Zeichenfolgen wird die Groß-/Kleinschreibung beachtet. Zum Beispiel ist „A”
größer als „a”.

Mischen von Gleitkommazahlen und Ganzzahlen
MMBasic kümmert sich automatisch um die Umwandlung von Zahlen zwischen Gleitkomma- und Ganzzahlen.
Wenn eine Operation sowohl Gleitkomma- als auch Ganzzahlen mischt (z. B. PRINT A% + B!), wird die
Ganzzahl zuerst in eine Gleitkommazahl umgewandelt, dann wird die Operation durchgeführt und eine
Gleitkommazahl zurückgegeben. Wenn beide Seiten des Operators Ganzzahlen sind, wird eine
Ganzzahloperation durchgeführt und eine Ganzzahl zurückgegeben.

PicoMite Benutzerhandbuch Seite 35

Die einzige Ausnahme ist die normale Division („/“), bei der immer beide Seiten des Ausdrucks in eine
Gleitkommazahl umgewandelt werden und dann eine Gleitkommazahl zurückgegeben wird. Für die
ganzzahlige Division solltest du den ganzzahligen Divisionsoperator „\“ verwenden.

MMBasic-Funktionen geben je nach ihren Eigenschaften einen Float- oder einen Integer-Wert zurück. PIN()
gibt zum Beispiel einen Integer-Wert zurück, wenn der Pin als digitaler Eingang konfiguriert ist, aber einen
Float-Wert, wenn er als analoger Eingang konfiguriert ist.

Bei Bedarf kannst du eine Gleitkommazahl mit der Funktion INT() in eine Ganzzahl umwandeln. Es ist nicht
nötig, eine Ganzzahl speziell in eine Gleitkommazahl umzuwandeln, aber wenn es nötig wäre, könnte der
Ganzzahlwert einer Gleitkommavariablen zugewiesen werden und würde bei der Zuweisung automatisch
umgewandelt werden.

Strukturen
Mit Strukturen (auch als benutzerdefinierte Typen bekannt) kannst du zusammengehörige Variablen
unterschiedlicher Typen unter einem einzigen Namen zusammenfassen. Das ist praktisch, um komplexe Daten
wie Koordinaten, Datensätze oder jede Sammlung zusammengehöriger Werte zu organisieren. Dieser Abschnitt
gibt einen kurzen Überblick, aber Strukturen werden ausführlich in der Datei MMBasic_Structures_Manual.pdf
beschrieben, die im ZIP-Archiv zum Firmware-Download enthalten ist.

Als Beispiel für eine Struktur nehmen wir an, dass du mehrere Alarme verfolgen musst. Jeder Alarm hat
mehrere Eigenschaften: den Zeitpunkt des Alarms, seine Stufe (1, 2, 3 usw.) und die ergriffene Maßnahme.
Mit Strukturen kannst du die Daten für einen Alarm als eine einzige „Sache” behandeln.

Um beispielsweise eine Struktur für einen Alarm zu erstellen, könntest du Folgendes verwenden:
TYPE StructAlarm
 time AS INTEGER
 level AS INTEGER
 action AS STRING
END TYPE

Die Typen der Elemente können alle normalen Datentypen in MMBasic sein (FLOAT, INTEGER oder
STRING). Der neue Typ, den du definiert hast, kann dann zum Definieren einer Variablen verwendet werden.
Du könntest zum Beispiel eine neue Variable namens „alarm” mit folgendem Befehl definieren:

DIM alarm AS StructAlarm

Du kannst eine Struktur auch als LOCAL oder STATIC innerhalb einer Subroutine oder Funktion definieren.

Auf die Elemente der Struktur kannst du mit einem Punkt (.) zwischen dem Namen der Variablen und dem
Namen des Elements zugreifen. Zum Beispiel: alarm.time.

Du kannst den Elementen der Struktur Werte mit einer normalen Zuweisung zuweisen. Zum Beispiel:
alarm.time = EPOCH(NOW)
alarm.level = 3

Und du kannst mit derselben Notation auf Mitglieder der Struktur zugreifen:
IF alarm.level > 4 THEN ...

Du kannst eine Struktur einer anderen Struktur desselben Typs zuweisen:
DIM alarm AS StructAlarm
DIM a2 AS StructAlarm
...
alarm = a2

Du kannst eine Subroutine oder Funktion aufrufen, indem du eine Struktur als einen oder mehrere ihrer
Parameter verwendest:

MySub alarm, a2

Und eine Funktion kann eine Struktur zurückgeben:
FUNCTION MyFun() AS StructAlarm
 MyFun.time = EPOCH(NOW)
 MyFun.level = 1
END FUNCTION
...
alarm = MyFun()

Du kannst ein Array von Strukturen wie jedes normale Array definieren:

Seite36 PicoMite-Benutzerhandbuch

DIM alarm(nbr) AS StructAlarm

Und du kannst ganz einfach auf die Elemente jedes Elements im Array zugreifen:
IF alarm(i).time < x AND alarm(i).level < y THEN CallSomeSub

MMBasic hat viele Befehle für die spezielle Behandlung von Strukturen, zum Beispiel zum Speichern und
Laden aus einer Datei, zum Sortieren eines Struktur-Arrays, zum Zurücksetzen der Elemente einer Struktur und
so weiter. Alle Details findest du in der Datei MMBasic_Structures_Manual.pdf, die im ZIP-Archiv mit der
Firmware enthalten ist.

64-Bit-Ganzzahlen ohne Vorzeichen

MMBasic unterstützt 64-Bit-Ganzzahlen mit Vorzeichen. Das heißt, es gibt 63 Bits für die Zahl und ein Bit
(das höchstwertige Bit), das das Vorzeichen (positiv oder negativ) angibt. Man kann aber auch 64-Bit-
Ganzzahlen ohne Vorzeichen verwenden, solange man keine Rechenoperationen mit den Zahlen macht.

64-Bit-Ganzzahlen ohne Vorzeichen können mit den Präfixen &H, &O oder &B vor einer Zahl erstellt werden,
und diese Zahlen können in einer Ganzzahlvariablen gespeichert werden. Dann gibt es nur eine begrenzte
Anzahl von Operationen, die du mit diesen Zahlen durchführen kannst. Das sind << (nach links verschieben),
>> (nach rechts verschieben), AND (bitweise UND), OR (bitweise ODER), XOR (bitweise exklusives ODER),
INV (bitweise Inversion), = (gleich) und <> (ungleich). Arithmetische Operatoren wie Division oder Addition
können durch eine 64-Bit-Zahl ohne Vorzeichen verwirrt werden und unsinnige Ergebnisse liefern.

Um 64-Bit-Zahlen ohne Vorzeichen anzuzeigen, solltest du die Funktionen HEX$(), OCT$() oder BIN$()
benutzen.

Die folgende 64-Bit-Operation ohne Vorzeichen liefert zum Beispiel die erwarteten Ergebnisse:
X% = &HFFFF0000FFFF0044
Y% = &H800FFFFFFFFFFFFF
X% = X% AND Y%
PRINT HEX$(X%, 16)

Zeigt „800F0000FFFF0044” an

PicoMite Benutzerhandbuch Seite 37

Unterprogramme und Funktionen

Eine in einem Programm definierte Unterroutine oder Funktion ist einfach ein Block von Programmcode, der in
einem Modul enthalten ist und von überall in deinem Programm aufgerufen werden kann. Das ist so, als hättest
du der Sprache deinen eigenen Befehl oder deine eigene Funktion hinzugefügt.

Unterprogramme
Eine Unterprogramm funktioniert wie ein Befehl und kann Argumente haben (manchmal auch als
Parameterliste bezeichnet). In der Definition der Unterprogramm sehen sie so aus:

SUB MYSUB arg1, arg2$, arg3
 <Anweisungen>
 <Anweisungen>
END SUB

Wenn du die Unterroutine aufrufst, kannst du den Argumenten Werte zuweisen. Zum Beispiel:
MYSUB 23, "Katze", 55

Innerhalb der Unterprogramm hat arg1 den Wert 23, arg2$ den Wert „Cat“ und so weiter. Die
Argumente verhalten sich wie normale Variablen, existieren aber nur innerhalb der Unterprogramm und
verschwinden, wenn die Unterprogramm endet. Du kannst Variablen mit dem gleichen Namen im
Hauptprogramm haben, die dann von den für die Unterprogramm definierten Argumenten verdeckt werden.

Wenn du eine Subroutine aufrufst, kannst du weniger als die erforderliche Anzahl von Werten angeben. In
diesem Fall werden die fehlenden Werte entweder als Null oder als leere Zeichenfolge angenommen. Du kannst
auch einen Wert in der Mitte der Liste weglassen, dann passiert dasselbe. Zum Beispiel:

MYSUB 23, , 55

Dies führt dazu, dass arg2$ auf die leere Zeichenfolge „ “ gesetzt wird. .

Anstatt das Typ-Suffix (z. B. das $ in arg2$) zu verwenden, kannst du das Suffix AS <Typ> in der Definition
des Unterprogrammarguments verwenden, und dann wird das Argument als der angegebene Typ erkannt, auch
wenn das Suffix nicht verwendet wird. Beispiel:

SUB MYSUB arg1, arg2 AS STRING, arg3
 IF arg2 = "Cat" THEN …
END SUB

Innerhalb einer Subroutine kannst du eine Variable mit LOCAL definieren (das hat die gleiche Syntax wie
DIM). Diese Variable existiert nur innerhalb der Subroutine und verschwindet, wenn die Subroutine beendet
wird.

Funktionen
Funktionen sind ähnlich wie Unterprogramme, mit dem Hauptunterschied, dass eine Funktion dazu dient, einen
Wert in einem Ausdruck zurückzugeben. Die Regeln für die Argumentliste in einer Funktion sind ähnlich wie
bei Unterprogrammen. Der einzige Unterschied besteht darin, dass beim Aufruf einer Funktion Klammern um
die Argumentliste gesetzt werden müssen, auch wenn keine Argumente vorhanden sind (beim Aufruf eines
Unterprogramms sind Klammern optional).

Um einen Wert aus der Funktion zurückzugeben, weist man dem Namen der Funktion innerhalb der Funktion
einen Wert zu. Wenn der Name der Funktion mit einem $, einem % oder einem ! endet, gibt die Funktion
diesen Typ zurück, andernfalls gibt sie den Wert zurück, auf den OPTION DEFAULT gesetzt ist. Man kann
den Typ der Funktion auch angeben, indem man AS <Typ> an das Ende der Funktionsdefinition anhängt.

Zum Beispiel:
FUNCTION Fahrenheit(C) AS FLOAT
 Fahrenheit = C * 1,8 + 32
END FUNCTION

Argumente per Referenz übergeben
Wenn du beim Aufruf einer Subroutine oder Funktion eine normale Variable (also keinen Ausdruck) als Wert
verwendest, zeigt das Argument innerhalb der Subroutine/Funktion zurück auf die im Aufruf verwendete
Variable, und alle Änderungen am Argument werden auch an der übergebenen Variable vorgenommen. Dies
wird als Übergabe von Argumenten per Referenz bezeichnet.

Seite38 PicoMite-Benutzerhandbuch

Du kannst zum Beispiel eine Subroutine definieren, um zwei Werte wie folgt zu vertauschen:
SUB Swap a, b
 LOCAL t
 t = a
 a = b
 b = t
END SUB

In deinem aufrufenden Programm würdest du für beide Argumente Variablen verwenden:
Swap nbr1, nbr2

Das Ergebnis ist, dass die Werte von nbr1 und nbr2 vertauscht werden.

Damit das klappt, müssen der Typ der übergebenen Variablen (z. B. nbr1) und das definierte Argument (z. B.
a) gleich sein (im obigen Beispiel sind beide standardmäßig float).

Wenn du ein Argument als allgemeine Variable in einer Subroutine oder Funktion verwenden willst (also
seinen Wert ändern willst), solltest du vor seiner Definition das Schlüsselwort BYVAL setzen. Das sagt
MMBasic, dass es immer den Wert des Arguments nehmen soll, auch wenn es eine Variable ist, und nie auf die
Variable zurückgreifen soll, die im Aufruf benutzt wird. Der Grund dafür ist, dass ein anderer Nutzer deiner
Routine unwissentlich eine Variable in seinem Aufruf verwenden könnte, die dann von deiner Routine „auf
magische Weise” geändert würde, wenn du BYVAL nicht verwendet hättest.

Beachte, dass BYVAL nur mit einfachen Variablen funktioniert (nicht mit Arrays oder Strukturen).

Arrays übergeben
Einzelne Elemente eines Arrays können an eine Subroutine oder Funktion übergeben werden und werden wie
eine normale Variable behandelt. Dies ist beispielsweise eine gültige Methode zum Aufruf der Subroutine
Swap (siehe oben):

Swap dat(i), dat(i + 1)

Diese Art von Konstruktion wird oft zum Sortieren von Arrays verwendet.

Du kannst auch ein oder mehrere komplette Arrays an eine Subroutine oder Funktion übergeben, indem du das
Array mit leeren Klammern anstelle der normalen Dimensionen angibst, z. B. a(). In der Subroutine- oder
Funktionsdefinition muss der zugehörige Parameter ebenfalls mit leeren Klammern angegeben werden. Der
Typ (d. h. Float, Integer oder String) des übergebenen Arguments und des Parameters in der Definition muss
identisch sein.

In der Subroutine oder Funktion übernimmt das Array die Dimensionen des übergebenen Arrays, die bei der
Indizierung des Arrays beachtet werden müssen. Bei Bedarf können die Dimensionen des Arrays als
zusätzliche Argumente an die Subroutine oder Funktion übergeben werden oder über die Funktion BOUND()
ermittelt werden. Das Array wird per Referenz übergeben, was bedeutet, dass alle Änderungen, die innerhalb
der Subroutine oder Funktion am Array vorgenommen werden, auch für das übergebene Array gelten.

Wenn zum Beispiel das Folgende ausgeführt wird, werden die Wörter „Hello World” ausgegeben:
DIM MyStr$(5, 5)
MyStr$(4, 4) = „Hello” : MyStr$(4, 5) = „World”
Concat MyStr$()
PRINT MyStr$(0, 0)

SUB Concat arg$()
 arg$(0,0) = arg$(4, 4) + " " + arg$(4, 5)
END SUB

Vorzeitiges Beenden
Für jede Definition einer Unterroutine oder Funktion kann es nur ein END SUB oder END FUNCTION geben.
Um eine Unterroutine vorzeitig zu verlassen (d. h. bevor der Befehl END SUB erreicht wurde), kannst du den
Befehl EXIT SUB verwenden. Dies hat denselben Effekt, als hätte das Programm die Anweisung END SUB
erreicht. Auf ähnliche Weise kannst du EXIT FUNCTION verwenden, um eine Funktion vorzeitig zu
verlassen.

Rekursion
Rekursion ist, wenn eine Unterprogramm oder Funktion sich selbst aufruft. Du kannst Rekursion in MMBasic
machen, aber es gibt ein paar Probleme (die sind eine direkte Folge der Einschränkungen von Mikrocontrollern
und der Sprache BASIC):

PicoMite Benutzerhandbuch Seite 39

 Die Tiefe der Rekursion ist auf einen festen Wert begrenzt. In der PicoMite-Firmware sind das 50 Ebenen.
 Wenn du viele Argumente für die Unterroutine oder Funktion und viele LOCAL-Variablen (insbesondere

Zeichenfolgen) hast, kann der Speicherplatz schnell knapp werden, bevor die Grenze von 50 Ebenen
erreicht ist.

 Alle FOR…NEXT-Schleifen und DO…LOOPs werden beschädigt, wenn die Subroutine oder Funktion
rekursiv aus diesen Schleifen heraus aufgerufen wird.

Beispiele
Oftmals besteht die Notwendigkeit, einen speziellen Befehl oder eine spezielle Funktion in MMBasic zu
implementieren, aber in vielen Fällen können diese mit einer gewöhnlichen Unterprogramm oder Funktion
erstellt werden, die dann genau wie ein integrierter Befehl oder eine integrierte Funktion funktioniert.

Manchmal wird zum Beispiel eine TRIM-Funktion benötigt, die bestimmte Zeichen am Anfang und am Ende
einer Zeichenfolge entfernt. Im Folgenden findest du ein Beispiel dafür, wie man eine solche einfache Funktion
in MMBasic erstellen kann.

Das erste Argument der Funktion ist die zu trimmende Zeichenkette, das zweite ist eine Zeichenkette, die die
aus der ersten Zeichenkette zu trimmenden Zeichen enthält. RTrim$() trimmt die angegebenen Zeichen vom
Ende der Zeichenkette, LTrim$() vom Anfang und Trim$() von beiden Enden.

' Alle Zeichen in c$ am Anfang und Ende von s$ entfernen
Funktion Trim$(s$, c$)
 Trim$ = RTrim$(LTrim$(s$, c$), c$)
Ende der Funktion

' Alle Zeichen in c$ vom Ende von s$ entfernen
Funktion RTrim$(s$, c$)
 RTrim$ = s$
 Solange Instr(c$, Right$(RTrim$, 1))
 RTrim$ = Mid$(RTrim$, 1, Len(RTrim$) - 1)
 Schleife
Ende Funktion

' Alle Zeichen in c$ vom Anfang von s$ entfernen
Funktion LTrim$(s$, c$)
 LTrim$ = s$
 Do While Instr(c$, Left$(LTrim$, 1))
 LTrim$ = Mid$(LTrim$, 2)
 Schleife
Ende Funktion

Hier ein Beispiel, wie man diese Funktionen benutzt:
S$ = " ****23.56700 "
PRINT Trim$(s$, " ")

Das Ergebnis ist „****23.56700”.
PRINT Trim$(s$, " *0")

Ergibt „23,567”
PRINT LTrim$(s$, " *0")

Ergibt „23,56700”

Seite40 PicoMite-Benutzerhandbuch

Videoausgabe

VGA-Video
Bei Firmware-Versionen, die VGA unterstützen, wird die Videoausgabe beim Start automatisch aktiviert – es
müssen keine Optionen eingestellt werden.

Das folgende Diagramm zeigt, wie du den VGA-Monitor anschließen kannst.

Die Ausgabe erfolgt im Standard-VGA-Format mit einer Pixelfrequenz von 25,175 MHz und einer
Bildfrequenz von 60 Hz.

Es gibt zwei oder drei Modi, die mit dem Befehl MODE ausgewählt werden können:

MODE 1 Monochrom mit einer Auflösung von 640 x 480 (Standard bei Start)

MODUS 2 16 Farben mit einer Auflösung von 320 x 240

MODUS 3 16 Farben mit einer Auflösung von 640 x 480 (nur RP2350)

In MODUS 2 und 3 sind es 16 Farben im 4-Bit-RGB121-Format (also 1 Bit für Rot, 2 Bits für Grün und 1 Bit
für Blau). In MODUS 2 werden die Pixel sowohl entlang der x- als auch der y-Achse dupliziert, was eine
Auflösung von 320 x 240 ergibt, während der Monitor immer noch ein 640 x 480-Signal sieht.

Die Ausgabe von MMBasic wird als Bitmap in einen Framebuffer geschrieben. Die Firmware nutzt dann die
zweite CPU im Prozessor, um diese Framebuffer-Daten pixelweise über DMA an einen der programmierbaren
I/O-Controller (PIO0) des RP2040 zu senden und so die Anzeige zu erzeugen. Da dies unabhängig vom
Hauptprozessor läuft, hat die Erzeugung der VGA-Ausgabe kaum oder gar keinen Einfluss auf die
Geschwindigkeit von MMBasic.

HDMI-Video
Für Versionen der Firmware, die HDMI-Video unterstützen, sind in der folgenden Tabelle die Anschlüsse an
die Standard-HDMI-Buchse vom Typ A aufgeführt. Der HDMI-Ausgang wird beim Start automatisch aktiviert
– es müssen keine Optionen eingestellt werden.

HDMI-Pin 1: Pin 21 (GP16) über einen 220-Ω-Widerstand HDMI-Pin 13: Keine Verbindung

HDMI-Pin 2: Masse HDMI-Pin 14: Keine Verbindung

HDMI-Pin 3: Pin 22 (GP17) über einen 220-Ω-Widerstand HDMI-Pin 15: Keine Verbindung

HDMI-Pin 4: Pin 24 (GP18) über einen 220-Ω-Widerstand HDMI-Pin 16: Keine Verbindung

HDMI-Pin 5: Masse HDMI-Pin 17: Masse

HDMI-Pin 6: Pin 25 (GP19 über einen 220-Ω-Widerstand HDMI-Pin 18: +5 V über Schottky-
Barrierendiode

HDMI-Pin 7: Pin 16 (GP12) über einen 220-Ω-Widerstand HDMI-Pin 19: Keine Verbindung

HDMI-Pin 8: Masse

HDMI-Pin 9: Pin 17 (GP13) über einen 220-Ω- Widerstand

PicoMite Benutzerhandbuch Seite 41

HDMI-Pin 10: Pin 19 (GP14) über einen 220-Ω-Widerstand HDMI

HDMI-Pin 11: Masse Vorderseite

HDMI-Pin 12: Pin 20 (GP15) über einen 220-Ω-Widerstand Ansicht

Die HDMI-Signal-Pins werden mit hoher Frequenz angesteuert, deshalb solltest du auf Folgendes achten:

 Halte die Signalleitungen so kurz wie möglich.

 Stell sicher, dass alle Signalleitungen gleich lang sind.

 Die 220-Ω-Widerstände sollten vorzugsweise oberflächenmontiert sein.

Um das DVI/HDMI-Signal zu erzeugen, muss die Firmware den RP2350 auf bis zu 372 MHz übertakten, was
für die meisten Raspberry Pi Pico 2-Module bei diesen Geschwindigkeiten kein Problem darstellt. Dies kann
jedoch nicht garantiert werden, insbesondere bei Modulen von Drittanbietern. Ein Beispiel hierfür ist das
Pimoroni Pico Plus 2, das bei den erforderlichen Geschwindigkeiten an seine Grenzen stößt und daher nicht für
die HDMI-Versionen der PicoMite-Firmware empfohlen werden kann.

Ähnlich wie bei der Erzeugung von VGA wird die Ausgabe von MMBasic in einen Framebuffer geschrieben,
der mithilfe der zweiten CPU und DMA an das HSTX-Peripheriegerät weitergeleitet wird, das wiederum die
parallelen Videodaten erzeugt. Das erzeugte Videosignal ist eigentlich DVI (HDMI unterstützt DVI), was
bedeutet, dass Audio am HDMI-Ausgang nicht unterstützt wird und auch anspruchsvolle HDMI-Funktionen
wie High Definition Content Protection (HDCP) und Ethernet nicht unterstützt werden.

HDMI-Video unterstützt eine Reihe von Auflösungen. Um diese einzustellen, benutzt man den folgenden
Befehl:

OPTION RESOLUTION nn

Dabei ist „nn” einer der folgenden Werte:

640x480 oder 640

1280x720 oder 1280

1024x768 oder 1024

800x600 oder 800

720x400 oder 720

848 x 480 oder 848

Jede HDMI-Auflösung kann in verschiedenen Modi betrieben werden, die mit dem Befehl MODE eingestellt
werden. Beachte, dass viele Modi die angezeigte Auflösung reduzieren, um Speicherplatz für andere
Funktionen zu sparen. Diese Reduzierung erfolgt durch Verdopplung oder Vervierfachung jedes Pixels, aber
der Monitor sieht immer die mit dem Befehl OPTION RESOLUTION eingestellte Auflösung (d. h.
Pixeldichte). Die Standardeinstellung ist RESOLUTION 640x480 und MODE 1

VGA/PS2-Referenzdesign (Raspberry Pi Pico)
Dies ist ein einfach zu montierendes Design, das den VGA-
Ausgang, die PS2-Tastaturschnittstelle und den SD-
Kartensteckplatz implementiert (dieses Design wurde im
Magazin „Silicon Chip“ vorgestellt).

Es verwendet gängige Durchsteckkomponenten und kann in
weniger als einer Stunde zusammengebaut werden.

Alle 40 Pins auf dem Raspberry Pi Pico sind mit einem 40-
poligen Stecker auf der Rückseite der Leiterplatte verbunden,
genau wie beim Pico. So kannst du ganz einfach externe Geräte
anschließen, indem du dir das Pinbelegungsdiagramm in diesem
Handbuch anschaust und dann die passenden Pins auf dem 40-
poligen Stecker auswählst.

Unter Berücksichtigung der für den VGA-Ausgang, die Tastatur
und die SD-Karte reservierten I/O-Pins stehen 14 I/O-Pins für
externe Schaltungen zur Verfügung.

Die Platine passt in ein Altronics-Steckgehäuse mit den Maßen
130 x 75 x 28 mm (Teilenummer H0376).

Seite42 PicoMite-Benutzerhandbuch

Das Konstruktionspaket für dieses Design kannst du hier runterladen: https://geoffg.net/picomitevga.html
(unten auf der Seite).

HDMI/USB-Referenzdesign (Raspberry Pi Pico 2)
Dies ist ein voll ausgestattetes Design auf Basis des Raspberry
Pi Pico 2 (mit RP2350-Prozessoren), das Folgendes umfasst:

 HDMI-Videoausgang

 Vier USB-Schnittstellen für Tastatur, Maus, Gamepad
usw.

 Hochwertigen Audioausgang für verstärkte Lautsprecher.

 USB-Schnittstelle zur seriellen Konsole.

 Batteriegepufferte Echtzeituhr.

 Micro-SD-Kartensteckplatz.

 14 I/O-Pins auf der Rückseite.

 Passend für ein Multicomp MCRM2015S- oder
Hammond RM2015S-Gehäuse.

Das Konstruktionspaket für dieses Design kannst du hier
runterladen: https://geoffg.net/picomitevga.html (unten auf der
Seite).

PicoMite Benutzerhandbuch Seite 43

https://geoffg.net/picomitevga.html
https://geoffg.net/picomitevga.html

Tastatur/Maus/Gamepad

Die PicoMite-Firmware unterstützt Tastaturen und Mäuse, die entweder über eine PS2- oder eine USB-
Schnittstelle angeschlossen werden. Ob PS2 oder USB, hängt von der Version der Firmware ab, die geladen
ist. Schau dir dazu das Kapitel „Firmware-Versionen und Dateien” am Anfang dieses Handbuchs an.

USB-Versionen der Firmware unterstützen auch ein PS3- oder PS4-Gamepad mit USB-Schnittstelle. Bei
Versionen ohne USB-Unterstützung können die Befehle WII (CLASSIC) und WII NUNCHUCK verwendet
werden, um ein über I2C angeschlossenes Gamepad anzugeben.

Eine Tastatur kann zur Eingabe von Daten in das BASIC-Programm verwendet werden oder, mit einem
VGA/HDMI-Videoausgang, zum Erstellen eines eigenständigen Computers mit Tastatur und Display. Anstelle
eines Videoausgangs kannst du bei Versionen, die dies unterstützen, auch ein LCD-Panel anschließen und die
Ausgabe der MMBasic-Konsole auf dem LCD-Panel anzeigen, wodurch eine kompaktere Version eines
eigenständigen Computers entsteht. Weitere Infos dazu findest du im Abschnitt „LCD-Display als
Konsolenausgabe”.

PS2-Tastatur auf dem Raspberry Pi Pico (RP2040)
Die Takt- und Datensignale der PS2-Tastatur arbeiten mit 5 V, aber die I/O-Pins der RP2040-Prozessoren dürfen
nicht mehr als 3,6 V ausgesetzt werden. Deshalb sollte ein Pegelumsetzer verwendet werden, damit der
Raspberry Pi Pico Signalspannungen im Bereich von 0 bis 3,3 V sieht, während die Tastatur Spannungen von 0
bis 5 V sieht.

Es gibt viele Möglichkeiten, dies zu erreichen, aber die folgende Schaltung ist eine einfache und kostengünstige
Lösung:

Der empfohlene MOSFET ist ein TN0702N3-G oder ZVNL110A, aber der gängige 2N7000 wurde getestet und
funktioniert gut.

Nach dem Anschließen muss die Tastatur mit dem Befehl OPTION KEYBOARD aktiviert werden.

PS2-Tastatur auf dem Raspberry Pi Pico 2 (RP2350)

Die I/O-Pins der Mikrocontroller der RP2350-Serie können 5 V aushalten (wenn sie eingeschaltet sind), sodass
die Tastatur direkt angeschlossen werden kann, wie gezeigt, mit der 5-V-Spannung vom VSYS-Pin des
Raspberry Pi Pico 2.

Die Tastatur wird mit dem Befehl OPTION KEYBOARD aktiviert.

Seite44 PicoMite-Benutzerhandbuch

PS2-Maus
Die für eine PS2-Maus verwendeten I/O-Pins müssen mit den Befehlen OPTION MOUSE (an der
Eingabeaufforderung) oder MOUSE OPEN (innerhalb eines Programms) konfiguriert werden.

Eine PS2-Maus wird mit 5 V betrieben, daher ist bei einem Raspberry Pi Pico (RP2040) ein Pegelumsetzer für
die Takt- und Datenpins der Maus erforderlich – dieser kann derselbe sein wie der oben genannte Schaltkreis
für eine PS2-Tastatur. Bei einem Raspberry Pi Pico 2 (RP2350) ist kein Pegelumsetzer erforderlich, sodass die
Maus direkt angeschlossen werden kann.

USB-Schnittstelle
Versionen der Firmware (sowohl RP2040 als auch RP2350) mit USB-Unterstützung ermöglichen den
Anschluss einer Tastatur, einer Maus und/oder eines Gamepads über die USB-Schnittstelle. Dazu wird der
USB-Anschluss des Raspberry Pi Pico in einen USB-Host umgewandelt (im Gegensatz zum normalen Modus
als USB-Client). Das geht, weil der Anschluss und die Elektronik des Pico USB-OTG-kompatibel (On The Go)
sind, ähnlich wie der Anschluss vieler Handys.

Da der USB-Anschluss für andere Aufgaben genutzt wird , muss der Pico über 5 V am VSYS-Pin oder am
VbUS-Pin mit Strom versorgt werden, wenn du einen externen Hub/eine externe Tastatur über den Pico mit
Strom versorgen willst.

Um ein USB-Gerät anzuschließen, brauchst du ein Konverterkabel mit einem Micro-USB-Stecker an einem
Ende (für den Pico) und einer USB-Buchse vom Typ A am anderen Ende (für das Gerät). Ein typisches
Beispiel ist das Jaycar Cat Nbr WC7725.

Da die USB-Schnittstelle des Pico zu einem USB-Host umgewandelt wurde, hast du keinen Zugriff mehr auf
die serielle MMBasic-Konsole. Die Firmware gleicht das aus, indem sie automatisch Pin 11 (GP8) für die
serielle Konsole Tx und Pin 12 (GP9) für Rx nutzt und die Baudrate auf 115200 Baud einstellt. Um auf diese
Konsole zuzugreifen, brauchst du eine USB-zu-Seriell-Brücke, die auf der einen Seite eine TTL-
Seriellschnittstelle und auf der anderen Seite eine USB-Schnittstelle hat (such nach Modulen mit dem CP2102-
oder CH340-Chip). Bei Bedarf kannst du mit OPTION SERIAL CONSOLE die für die Konsole verwendeten
Pins ändern.

USB-Hub
Die Firmware unterstützt über diese Schnittstelle auch einen USB-Hub, sodass mehrere Tastaturen oder eine
Tastatur plus Maus plus Gamepad usw. angeschlossen werden können. Über einen Hub können maximal 4
Geräte angeschlossen werden. Diese werden durch eine Kanalindexnummer (1 bis 4) referenziert. Verwende
MM.INFO(USB n), um den Gerätecode für jedes an Kanal n angeschlossene Gerät zurückzugeben.
Standardmäßig wird eine Tastatur dem Kanal 1 zugewiesen. Eine Maus wird dem Kanal 2 zugewiesen. Das
erste Gamepad wird dem Kanal 3 und ein zweites Gamepad dem Kanal 4 zugewiesen.

Wenn du einen USB-Hub verwendest, ist es besser, einen Hub ohne eigene Stromversorgung zu verwenden (d.
h. einen, der vom Raspberry Pi Pico mit Strom versorgt wird). Das liegt daran, dass der USB-Protokollstack
den Hub nicht zurücksetzen kann und es zu Verwirrung kommen kann, wenn der Pico aus- und wieder
eingeschaltet wird, ohne dass dies auch für den Hub geschieht. Der Hub kann auch verwirrt werden, wenn
Geräte ausgetauscht werden, während der Hub mit Strom versorgt wird. In diesem Fall solltest du den Pico und
anschließend den Hub aus- und wieder einschalten und dann die USB-Geräte nacheinander anschließen.

Beachte, dass ein Hub nicht unbedingt nötig ist. Wenn du nur ein Gerät (z. B. eine Tastatur) anschließen willst,
kannst du das Gerät einfach (mit einem Adapterkabel) direkt an den USB-Anschluss des Pico anschließen.

USB-Tastatur
Wenn eine USB-Tastatur angeschlossen wird, wird sie sofort erkannt (keine Konfiguration erforderlich) und
MMBasic ordnet sie standardmäßig Kanal 1 zu – es sind keine weiteren Schritte erforderlich.

USB-Maus
Wenn eine USB-Maus angeschlossen wird, wird sie sofort erkannt (keine Konfiguration nötig) und MMBasic
ordnet sie standardmäßig Kanal 2 zu – es ist nichts weiter erforderlich.

USB-Gamepad
Ein oder mehrere PS3- oder PS4-Controller oder Gamepads wie zum Beispiel
ein Super Nintendo SNES-Controller mit USB-Schnittstelle können über USB
angeschlossen werden (siehe Abbildung rechts).

PicoMite Benutzerhandbuch Seite 45

Standardmäßig wird das erste Gamepad dem Kanal 3 und das zweite Gamepad dem Kanal 4 zugewiesen.
Innerhalb eines Programms können die Daten vom Gamepad mit der Funktion DEVICE(GAMEPAD) gelesen
werden.

Konfigurieren der Tastatur
Standardmäßig wird die Tastaturkonfiguration als Standard-US-Layout angenommen. Mit dem Befehl
OPTION KEYBOARD kannst du aber auch Layouts für andere Länder einrichten.

Die Syntax des Befehls lautet:
OPTION KEYBOARD Sprache

Dabei ist „language” ein zweistelliger Code, z. B. US für die Standardtastatur, die in den USA, Australien und
Neuseeland verwendet wird. Andere Tastaturlayouts sind Großbritannien (UK), Frankreich (FR), Deutschland
(GR), Belgien (BE), Italien (IT), Brasilien (BR) oder Spanien (ES).

Beachte, dass die Nicht-US-Layouts einige der auf diesen Tastaturen vorhandenen Sondertasten abbilden, die
entsprechenden Sonderzeichen jedoch nicht angezeigt werden, da sie nicht Teil der Standard-PicoMite-
Schriftarten sind. Stattdessen wird ein Standard-ASCII-Zeichen verwendet.

Verwendung einer Maus
Die Maus ist besonders nützlich im MMBasic-Programmeditor, wo sie viele der Funktionen von GUI-Editoren
wie Notepad in Windows nachbilden kann (siehe den Abschnitt „Vollbild-Editor” weiter oben in diesem
Handbuch). Dazu gehören das Positionieren der Einfügemarke sowie das Kopieren und Einfügen mithilfe der
Zwischenablage.

Eine Maus kann auch in einem Programm verwendet werden, in dem ihre Position mit der Funktion DEVICE()
abgefragt werden kann. Das folgende Programm meldet zum Beispiel jede Mausbewegung.

Beachte, dass die Maus immer dem Kanal 2 zugewiesen ist.
„Endlosschleife, um jede Bewegung auf der Konsole auszugeben
Do
 mx=DEVICE(MOUSE 2, x)
 my=DEVICE(MOUSE 2, y)
 Wenn mx <> tx oder my <> ty Dann mx, my ausgeben
 tx = mx : ty = my
Schleife

Seite46 PicoMite-Benutzerhandbuch

Programm- und Datenspeicherung

Das BASIC-Programm wird im Flash-Speicher gehalten und von dort aus ausgeführt. Wenn ein Programm
über EDIT bearbeitet oder über die Konsole geladen wird, wird es dort gespeichert. Der Flash-Speicher ist
nichtflüchtig, sodass das Programm bei einem Stromausfall oder einem Neustart des Prozessors nicht verloren
geht.

Neben diesem Programmspeicher gibt es drei weitere Speicherorte, an denen Programme gespeichert werden
können. Diese werden im Folgenden unter „ “ (Speicherorte) ausführlich beschrieben: Flash-Slots, das Flash-
Dateisystem und eine angeschlossene SD-Karte.

Flash-Steckplätze
Es gibt drei davon, die zum Speichern völlig unterschiedlicher Programme oder früherer Versionen des
Programms, an dem Sie gerade arbeiten, verwendet werden können (für den Fall, dass Sie zu einer früheren
Version zurückkehren müssen). Außerdem kannst du mit MMBasic ein BASIC-Programm laden und ein
anderes Programm ausführen, das an einem nummerierten Flash-Speicherort gespeichert ist, wobei alle
Variablen und Einstellungen des ursprünglichen Programms beibehalten werden – das nennt man Verkettung
und ermöglicht die Ausführung eines viel größeren Programms, als es die Programmspeicherkapazität
normalerweise zulassen würde.

Um diese nummerierten Speicherplätze im Flash-Speicher zu verwalten, kannst du die folgenden Befehle
verwenden (beachte, dass n im Folgenden eine Zahl zwischen 1 und 3 ist):

FLASH SAVE n Speichert das Programm im Programmspeicher an der Flash-Speicherstelle
n.

FLASH LOAD n Lade ein Programm aus dem Flash-Speicherplatz n in den
Programmspeicher.

FLASH RUN n Führ ein Programm vom Flash-Speicherplatz n aus, löscht alle Variablen,
aber nicht das Programm im Hauptprogrammspeicher.

FLASH LIST Zeigt eine Liste aller Flash-Speicherplätze einschließlich der ersten Zeile
des Programms an.

FLASH LIST n [,ALL] Zeigt das Programm an Speicherplatz n an. Mit FLASH LIST n,ALL kannst
du die Liste ohne Seitenumbrüche anzeigen.

FLASH ERASE n Löscht den Flash-Speicherplatz n.

FLASH ALLE LÖSCHEN Löscht alle Flash-Speicherplätze.

FLASH CHAIN n Starte das Programm an Speicherplatz n und lass alle Variablen so, wie sie
sind. So kannst du echt große Programme ausführen, die in zwei oder drei
Teile aufgeteilt sind. Das Programm im Hauptspeicher wird dabei nicht
gelöscht oder geändert.

FLASH ÜBERSCHREIBEN n Löscht den Flash-Speicherplatz n und speichert dann das Programm
im Programmspeicher an diesem Speicherplatz.

FLASH DISK LOAD f$ [,O] Lädt einen Flash-Speicherplatz mit einer Binärdatei, die mit LIBRARY
DISK SAVE erstellt wurde. Überschreibt den Speicherplatz, wenn das
optionale „O“ angegeben ist.

Außerdem kann mit dem Befehl OPTION AUTORUN ein Flash-Programmspeicherplatz angegeben werden,
der beim Einschalten oder Neustart der CPU ausgeführt werden soll. Diese Option kann auch ohne Angabe
eines Flash-Speicherplatzes verwendet werden. In diesem Fall führt MMBasic das Programm im
Programmspeicher automatisch aus.

Hinweise:

 Es wird empfohlen, als erste Zeile des Programms einen Kommentar einzufügen, der das Programm
beschreibt. Dieser wird dann vom Befehl FLASH LIST angezeigt und hilft bei der Identifizierung des
Programms.

 Alle im Flash-Speicher gespeicherten BASIC-Programme können gelöscht werden, wenn du die PicoMite-
Firmware aktualisierst (oder downgradest). Mach also vorher ein Backup davon.

 Der Befehl LIBRARY nutzt Slot 3 zum Speichern von Bibliotheksdaten, sodass bei Verwendung der
Bibliotheksfunktion nur 2 Slots verfügbar sind.

PicoMite Benutzerhandbuch Seite 47

Flash-Dateisystem

Dies ist ein Bereich des Flash-Speichers des Raspberry Pi Pico, der automatisch von der Firmware erstellt wird
und für MMBasic wie ein normales Laufwerk aussieht. Er wird als Laufwerk A: bezeichnet, und Daten und
Programme können mit den normalen BASIC-Dateibefehlen (SAVE, RUN, OPEN usw.) gelesen/geschrieben
werden. Außerdem können Unterverzeichnisse erstellt und gelöscht sowie lange Dateinamen verwendet
werden.

Um zum Beispiel ein Programm auszuführen:
RUN „A:/MyProgram.bas”

Öffnen einer Textdatei für den wahlfreien Zugriff:
OPEN "A:/data/database.dat" FOR RANDOM as #4

Dieses Laufwerk wird automatisch erstellt, wenn die PicoMite-Firmware geladen wird, sodass es für das
BASIC-Programm immer verfügbar ist. Es kann zum Speichern von Programmen, Bildern, Musik,
Konfigurationsdaten, Protokolldateien und vielem mehr verwendet werden. Seine Größe hängt von der Größe
des Flash-Speichers ab – auf einem Raspberry Pi Pico mit 2 MB Flash-Speicher sind es 200 bis 500 KB, auf
einem Raspberry Pi Pico 2 mit 4 MB Flash-Speicher etwas mehr als 2 MB und auf einem Modul mit 16 MB
kann das Flash-Dateisystem bis zu 14 MB groß sein.

Das System erstellt und verwaltet die Datei „BOOTCOUNT” auf dem Flash-Dateisystem. Diese zählt, wie oft
das Gerät neu gestartet wurde, und kann mit der Funktion MM.INFO(boot count) gelesen werden.

SD-Karten

Ein SD-Kartensteckplatz kann an den Raspberry Pi Pico angeschlossen und als Laufwerk B: aufgerufen
werden. Wie beim Flash-Dateisystem können die normalen BASIC-Dateibefehle zum Speichern/Laden von
Programmen sowie zum Öffnen von Datendateien zum Lesen/Schreiben verwendet werden.

Es werden Karten mit bis zu 32 GB unterstützt, die mit FAT16 oder FAT32 formatiert sind. Die erstellten
Dateien können auch auf PCs mit Windows, Linux oder Mac-Betriebssystem gelesen/geschrieben werden. Die
PicoMite-Firmware nutzt das SPI-Protokoll, um mit der Karte zu kommunizieren. Das ist unabhängig vom
Kartentyp, sodass alle Typen (Klasse 4, 10, UHS-1 usw.) unterstützt werden. Eine Beschreibung von SPI
findest du unter: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Das SPI-Protokoll muss speziell konfiguriert werden, bevor es verwendet werden kann. Dies kann auf zwei
Arten geschehen – entweder über den „System”-SPI-Port oder durch direkte Angabe der zu verwendenden I/O-
Pins:

System-SPI-Port

Dieser Port wird für Systemzwecke verwendet (SD-Karte, LCD-Display und Touch-Controller auf einem
LCD-Panel). Es gibt eine Reihe von Ports und Pins, die verwendet werden können (siehe Kapitel
„PicoMite-Hardware”), aber in diesem Beispiel wird SPI auf den Pins GP18, GP19 und GP16 für Clock,
MOSI und MISO verwendet.

OPTION SYSTEM SPI GP18, GP19, GP16
Dann musst du MMBasic sagen, dass eine SD-Karte eingesteckt ist und welcher Pin für das Chip-Select-
Signal (CS) benutzt wird:

OPTION SDCARD GP22
Spezielle I/O-Pins

Wenn keine anderen Geräte den SPI-Bus mit der SD-Karte teilen, kann man sie auch so einrichten:
OPTION SDCARD CS_pin, CLK_pin, MOSI_pin, MISO_pin

In diesem Fall können die Pins ganz flexibel zugewiesen werden und müssen nicht SPI-fähig sein, aber die
Leistung der SD-Karte ist besser, wenn gültige SPI-Pins ausgewählt werden.

Diese Befehle müssen an der Eingabeaufforderung (nicht in einem Programm) eingegeben werden und führen zu
einem Neustart der PicoMite-Firmware. Dies hat den Nebeneffekt, dass die USB-Konsolenschnittstelle getrennt
wird und erneut verbunden werden muss.

Wenn der Raspberry Pi Pico neu gestartet wird, initialisiert MMBasic automatisch die SD-Kartenschnittstelle.
Dieser SPI-Port steht dann für BASIC-Programme nicht mehr zur Verfügung (d. h. er ist reserviert). Um die
Konfiguration zu überprüfen, kannst du den Befehl OPTION LIST verwenden, um alle eingestellten Optionen
einschließlich der Konfiguration der SD-Karte aufzulisten.

Seite48 PicoMite-Benutzerhandbuch

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Der grundlegende Schaltplan für den Anschluss des SD-Kartensteckers unter Verwendung dieser Pin-
Zuweisungen ist unten dargestellt.

Beachte, dass du viele verschiedene Konfigurationen mit unterschiedlichen Pin-Zuweisungen verwenden
kannst – dies ist nur ein Beispiel, das auf den oben aufgeführten Konfigurationsbefehlen basiert.

Vorsicht ist geboten, wenn der SPI-Port von mehreren Geräten (SD-Karte, Touchscreen usw.) gemeinsam genutzt
wird. In diesem Fall müssen alle Chip-Select-Signale in MMBasic konfiguriert oder alternativ durch eine
permanente Verbindung mit 3,3 V deaktiviert werden. Wenn das nicht gemacht wird, können alle schwebenden
Chip-Select-Signalleitungen dazu führen, dass der falsche Controller auf Befehle auf dem SPI-Bus reagiert.

Kombinierte Chip-Auswahl
Der Chip-Select-Pin, der für die SD-Karte und den Touch-Controller auf einem LCD-Panel verwendet wird, kann
mit dem Befehl OPTION SDCARD COMBINED CS kombiniert werden. Wenn das angegeben wird, ist die
folgende Schaltung nötig, um den SD-Chip-Select zu machen:

Die Firmware nutzt den Touch-Pin wie folgt:

TOUCH_CS niedrig: TOUCH_CS niedrig, SD_CS hoch

TOUCH CS hoch: SD_CS niedrig: TOUCH_CS hoch

TOUCH CS als Eingang eingestellt (hohe Impedanz) TOUCH_CS und SD_CS hoch.

MMBasic-Unterstützung für Flash- und SD-Karten-Dateisysteme
Die MMBasic-Unterstützung für das Flash-Dateisystem und SD-Karten ist fast identisch. Dadurch können
Programme mit minimalen Änderungen beide Dateisysteme nutzen. Das Flash-Dateisystem wird als Laufwerk A:
bezeichnet, während die SD-Karte (wenn angeschlossen) Laufwerk B: ist. Das Standardlaufwerk kann mit dem
Befehl DRIVE festgelegt werden, dann wird das Laufwerkspräfix nicht gebraucht.

PicoMite Benutzerhandbuch Seite 49

Beachte dabei Folgendes:

 Groß-/Kleinschreibung und Leerzeichen sind erlaubt. Das Dateisystem auf der SD-Karte unterscheidet
NICHT zwischen Groß- und Kleinschreibung, das Flash-Dateisystem hingegen schon (dies ist der
einzige Unterschied zwischen den beiden).

 Neben dem alten 8.3-Format werden auch lange Datei-/Verzeichnisnamen unterstützt.

 Die maximale Datei-/Pfadlänge beträgt 63 Zeichen (127 Zeichen für RP2350-Versionen).

 Jeder Dateipfad, der den Laufwerksbuchstaben verwendet, muss ein vollständiger Pfad vom
Stammverzeichnis sein (z. B. „A:/mypath/myfile.txt“).

 Verzeichnispfade sind in Datei-/Verzeichniszeichenfolgen erlaubt. (z. B. OPEN „A:\dir1\dir2\file.txt“
FOR …).

 In Pfaden können sowohl Vorwärts- als auch Rückwärtsschrägstriche verwendet werden. Beispielsweise
entspricht \dir\file.txt dem Pfad /dir/file.txt.

 Beim Start ist das aktive Laufwerk (also das Standardlaufwerk) A: (das Flash-Dateisystem).

 Die aktuelle PicoMite-Firmware-Zeit wird für die Erstellungs- und letzte Zugriffszeit von Dateien
verwendet.

 Es können bis zu zehn Dateien gleichzeitig geöffnet sein, gemischt zwischen den Laufwerken A: und B:.

 Außer bei INPUT, LINE INPUT und PRINT ist das # in #fnbr optional und kann weggelassen werden.

Mit diesen Befehlen kannst du Programme aus dem Flash-Dateisystem und von SD-Karten laden oder dort
speichern.

 LOAD fname$ [, R]
Lädt ein BASIC-Programm. Der optionale Suffix „,R“ sorgt dafür, dass das Programm nach dem Laden
ausgeführt wird (in diesem Fall muss fname$ eine Zeichenfolgenkonstante sein).

 RUN fname
Lädt ein BASIC-Programm und führt es aus. fname$ kann eine Variable sein.

 SAVE fname$
Speichert das aktuelle Programm im Flash-Dateisystem oder auf der SD-Karte.

Das sind die grundlegenden Befehle zum Lesen und Schreiben von Daten.

 Öffne fname$ im Modus AS #fnbr
Öffnet eine Datei zum Lesen oder Schreiben. „fname$” ist der Dateiname. „mode” kann INPUT, OUTPUT,
APPEND oder RANDOM sein. „#fnbr” ist die Dateinummer (1 bis 10).

 PRINT #fnbr, Ausdruck [[,;]Ausdruck] … usw.
Schreibt Text in die als #fnbr geöffnete Datei.

 INPUT #fnbr, Liste von Variablen
Liest eine Liste von durch Kommas getrennten Daten in die angegebenen Variablen aus der zuvor als #fnbr
geöffneten Datei.

 LINE INPUT #fnbr, variable$
Liest eine komplette Zeile in die angegebene Zeichenfolgenvariable aus der zuvor als #fnbr geöffneten
Datei.

 FLUSH #fnbr
Sorgt dafür, dass alle zwischengespeicherten Schreibvorgänge ins Flash-Dateisystem oder auf die SD-Karte
geschrieben werden. Es wird empfohlen, diesen Befehl regelmäßig zu verwenden, wenn bei einem
Stromausfall Daten verloren gehen könnten.

 CLOSE #fnbr [,#fnbr] …
Schließt die zuvor mit der Dateinummer „#fnbr” geöffneten Dateien.

Seite50 PicoMite-Benutzerhandbuch

Grundlegende Datei- und Verzeichnisbearbeitung. Die meisten Befehle können über die Befehlszeile oder aus
einem BASIC-Programm heraus ausgeführt werden.

 DRIVE Laufwerk$
Legt das aktive Laufwerk als „drive$“ fest. „drive$“ kann „A:“ oder „B:“ sein, wobei A das Flash-
Laufwerk und B die SD-Karte ist (falls konfiguriert).

 DRIVE „A:/FORMAT“
Formatiert das Flash-Dateisystem (Laufwerk A:) wieder auf seinen ursprünglichen Zustand.

 FILES [Platzhalter]
Durchsucht das aktuelle Verzeichnis und listet die gefundenen Dateien/Verzeichnisse auf.
Hinweis: Kann nur in der Eingabeaufforderung verwendet werden, nicht innerhalb eines Programms.

 LIST fname$
Zeigt den Inhalt eines Programms oder einer Textdatei auf der Konsole an.

 KILL fname$
Löscht eine Datei im aktuellen Verzeichnis auf dem aktuellen Laufwerk.
Weitere Infos zum Löschen mit Platzhaltern findest du in der Befehlsreferenz.

 MKDIR dname$
Erstellt ein Unterverzeichnis im aktuellen Verzeichnis auf dem aktuellen Laufwerk.

 CHDIR dname$
Wechsle in das Verzeichnis $dname. $dname kann auch „..“ (Punkt Punkt) für das übergeordnete
Verzeichnis oder „\“ für das Stammverzeichnis sein. Der Startpunkt ist das aktuelle Verzeichnis auf dem
aktuellen Laufwerk.

 RMDIR dir$
Löscht das Verzeichnis „dir$” im aktuellen Verzeichnis auf dem aktuellen Laufwerk.

 SEEK #fnbr, pos
Positioniert den Lese-/Schreibzeiger in einer Datei, die für den zufälligen Zugriff geöffnet wurde, auf das
Byte „pos”.

 RENAME fromname$ AS toname$
Benennt die Datei fromname$ um, sodass sie im aktuellen Verzeichnis auf dem aktuellen Laufwerk den
Namen toname$ hat.

 COPY [Modus] fromname$ TO toname$
Kopiert die Datei fromname$, sodass sie den Namen toname$ erhält.
Weitere Infos zu den optionalen Kopiermodi und Platzhaltern findest du in der Befehlsreferenz.

Es gibt auch eine Reihe von Funktionen, die die oben genannten Befehle unterstützen.

 INPUT$(nbr, #fnbr)
Gibt eine Zeichenfolge zurück, die aus „nbr” Zeichen besteht, die aus einer zuvor für INPUT oder
RANDOM geöffneten Datei mit der Dateinummer „#fnbr” gelesen wurden. Wenn weniger als „nbr”
Zeichen verfügbar sind, gibt die Funktion die vorhandenen Zeichen zurück (einschließlich einer leeren
Zeichenfolge, wenn keine Zeichen verfügbar sind).

 DIR$(fspec, type)
Sucht nach Dateien und gibt die Namen der gefundenen Einträge zurück.

 CWD$
Gibt das aktuelle Arbeitsverzeichnis zurück.

 EOF(#fnbr)
Gibt „true“ zurück, wenn die zuvor für INPUT mit der Dateinummer „#fnbr“ geöffnete Datei am Ende der
Datei positioniert ist.

 LOC(#fnbr)
Bei einer geöffneten Datei gibt das die aktuelle Position des Lese-/Schreibzeigers in der Datei zurück.

PicoMite Benutzerhandbuch Seite 51

 LOF(#fnbr)
Gibt die aktuelle Länge der Datei in Bytes zurück.

 MM.INFO(Laufwerk)
Gibt das aktuell aktive Laufwerk zurück, also „A:“ oder „B:“.

 MM.INFO(free space)
Zeigt an, wie viel Speicherplatz auf dem aktiven Laufwerk noch verfügbar ist.

 MM.INFO(disk size)
Zeigt die Größe des aktiven Laufwerks an

 MM.INFO(Datei fname$ vorhanden)
Zeigt „true“ an, wenn die Datei da ist

 MM.INFO(exists dir dirname$)
Gibt „true“ zurück, wenn das Verzeichnis da ist

 MM.INFO(Pfad)
Gibt den Dateipfad des ausgeführten Programms zurück. Damit kann der Benutzer relative Pfadverweise
für alle in einem Programm benötigten Ressourcendateien erstellen.

XModem-Übertragung
Zusätzlich zur Standardmethode der XModem-Übertragung, bei der Daten in den oder aus dem
Programmspeicher kopiert werden, kann die PicoMite-Firmware auch Daten in eine oder aus einer Datei auf
dem Flash-Dateisystem oder der SD-Karte kopieren. Die Syntax lautet:

XMODEM SEND Dateiname$
oder

XMODEM RECEIVE Dateiname$

Wobei „filename$“ die Datei ist, die gespeichert oder gesendet werden soll. „filename$“ kann ein String-
Ausdruck, eine Variable oder eine Konstante sein. Wenn es sich um eine Konstante handelt, muss der String in
Anführungszeichen gesetzt werden (z. B. XMODEM SEND „prbas.bas“). Beim Empfang einer Datei wird jede
Datei mit dem gleichen Namen überschrieben.

Bild laden und speichern
Ein Bild kann aus dem Flash-Dateisystem oder von der SD-Karte geladen werden, um es auf einem
angeschlossenen LCD-Display oder einem VGA/HDMI-Monitor anzuzeigen. Das kann genutzt werden, um ein
Logo zu zeichnen oder einen Hintergrund auf dem Display hinzuzufügen.

Die Syntax lautet:

 LOAD IMAGE Dateiname$ [, StartX, StartY] (BMP-Bild laden)
oder LOAD JPG Dateiname$ [, StartX, StartY]
oder LOAD PNG Dateiname$ [, StartX, StartY] (nur Pico2/RP2350)

Dabei ist „Dateiname$” das zu ladende Bild und „StartX”/„StartY” sind die Koordinaten der oberen linken
Ecke des Bildes (diese sind optional und werden standardmäßig auf die obere linke Ecke des Displays gesetzt,
wenn sie nicht angegeben werden).

Das Bild muss im richtigen Format sein (BMP, JPG oder PNG) und MMBasic fügt die Dateiendung zum
Dateinamen hinzu, wenn sie nicht angegeben ist. Alle Bildtypen werden unterstützt, einschließlich
Schwarzweiß- und Echtfarben-Bilder mit 24_Bit.

Das aktuelle Bild auf dem Videoausgang, dem virtuellen LCD oder einem LCD-Panel, das BLIT unterstützt,
kann mit dem folgenden Befehl in einer Datei gespeichert werden:

SAVE IMAGE Dateiname$ [,StartX, StartY, Breite, Höhe]

Dadurch wird das Bild oder ein Teil des Bildes als 24-Bit-True-Color-BMP-Datei gespeichert (die
Erweiterung .BMP wird hinzugefügt, wenn keine Erweiterung angegeben wurde).

Beispiel für sequentielle E/A
Im folgenden Beispiel wird eine Datei erstellt und zwei Zeilen in die Datei geschrieben (mit dem Befehl
PRINT). Die Datei wird dann geschlossen.

Seite52 PicoMite-Benutzerhandbuch

OPEN „fox.txt” FOR OUTPUT AS #1
PRINT #1, „Der schnelle braune Fuchs“
PRINT #1, „springt über den faulen Hund”
CLOSE #1

Du kannst den Inhalt der Datei mit dem Befehl LINE INPUT lesen. Zum Beispiel:

ÖFFNE „fox.txt” FÜR EINGABE ALS #1
LINE INPUT #1,a$
LINE INPUT #1,b$
CLOSE #1

LINE INPUT liest jeweils eine Zeile, sodass die Variable a$ den Text „The quick brown fox” und b$ den Text
„jumps over the lazy dog” enthält.

Eine andere Möglichkeit, aus einer Datei zu lesen, ist die Funktion INPUT$(). Damit wird eine bestimmte
Anzahl von Zeichen gelesen. Zum Beispiel:

OPEN „fox.txt” FOR INPUT AS #1
ta$ = INPUT$(12, #1)
tb$ = INPUT$(3, #1)
CLOSE #1

Die erste INPUT$()-Funktion liest 12 Zeichen und die zweite drei Zeichen. Die Variable ta$ enthält also „The
quick br” und die Variable tb$ enthält „own”.

Dateien haben normalerweise nur Text und der Befehl „print” macht aus Zahlen Text. Im folgenden Beispiel
steht also in der ersten Zeile „123” und in der zweiten „56789”.

nbr1 = 123 : nbr2 = 56789
OPEN „numbers.txt” FOR OUTPUT AS #1
PRINT #1, nbr1
PRINT #1, nbr2
CLOSE #1

Du kannst den Inhalt dieser Datei mit dem Befehl LINE INPUT lesen, musst dann aber den Text mit VAL() in
eine Zahl umwandeln.

Zum Beispiel:

OPEN „numbers.txt” FOR INPUT AS #1
LINE INPUT #1, a$
LINE INPUT #1, b$
CLOSE #1
x = VAL(a$) : y = VAL(b$)

Danach hat die Variable x den Wert 123 und y den Wert 56789.

Zufällige Datei-E/A
Für den zufälligen Zugriff sollte die Datei mit dem Schlüsselwort RANDOM geöffnet werden. Zum Beispiel:

OPEN „Dateiname” FOR RANDOM AS #1

Um einen Datensatz in der Datei zu suchen, benutzt du den Befehl SEEK, der den Lese-/Schreibzeiger auf ein
bestimmtes Byte setzt. Das erste Byte in einer Datei ist mit eins nummeriert, sodass zum Beispiel der fünfte
Datensatz in einer Datei, die 64-Byte-Datensätze verwendet, bei Byte 257 anfängt. In diesem Fall würdest du
Folgendes verwenden, um darauf zu zeigen:

SEEK #1, 257

Beim Lesen aus einer Datei mit wahlfreiem Zugriff solltest du die Funktion INPUT$() verwenden, da diese
eine feste Anzahl von Bytes (d. h. einen vollständigen Datensatz) aus der Datei liest. Um beispielsweise einen
Datensatz mit 64 Bytes zu lesen, würdest du Folgendes verwenden:

dat$ = INPUT$(64, #1)

Beim Schreiben in die Datei sollte eine feste Datensatzgröße verwendet werden. Dies lässt sich leicht erreichen,
indem den zu schreibenden Daten ausreichend Füllzeichen (normalerweise Leerzeichen) hinzugefügt werden.
Beispiel:

PRINT #1, dat$ + SPACE$(64 – LEN(dat$));

PicoMite Benutzerhandbuch Seite 53

Die Funktion SPACE$() wird verwendet, um genügend Leerzeichen hinzuzufügen, damit die geschriebenen
Daten genau die richtige Länge haben (in diesem Beispiel 64 Bytes). Das Semikolon am Ende des
Druckbefehls verhindert, dass die Zeichen für Wagenrücklauf und Zeilenvorschub hinzugefügt werden, die den
Datensatz länger als beabsichtigt machen würden.

Zwei weitere Funktionen können bei der Verwendung des zufälligen Dateizugriffs hilfreich sein. Die Funktion
LOC() gibt die aktuelle Byte-Position des Lese-/Schreibzeigers zurück, und die Funktion LOF() gibt die
Gesamtlänge der Datei in Bytes zurück.

Das folgende Programm zeigt den zufälligen Dateizugriff. Mit ihm kannst du an die Datei anhängen (um
zunächst einige Daten hinzuzufügen) und dann Datensätze mit zufälligen Datensatznummern lesen/schreiben.
Der erste Datensatz in der Datei ist Datensatznummer 1, der zweite ist 2 usw.

RecLen = 64
OPEN "test.dat" FOR RANDOM AS #1

DO
abort: PRINT
PRINT "Anzahl der Datensätze in der Datei =" LOF(#1)/RecLen
INPUT "Befehl (r = lesen, w = schreiben, a = anhängen, q = beenden): ", cmd$
WENN cmd$ = "q" DANN SCHLIESSEN #1 : ENDE
WENN cmd$ = "a" DANN

SUCHEN #1, LOF(#1) + 1
SONST

INPUT "Datensatznummer: ", nbr
WENN nbr < 1 oder nbr > LOF(#1)/RecLen DANN DRUCKE „Ungültiger Datensatz” :

GOTO Abbruch
SUCHEN #1, RecLen * (nbr - 1) + 1

ENDIF
WENN cmd$ = "r" DANN

DRUCKE „Der Datensatz = “ INPUT$(RecLen, #1)
SONST

LINE INPUT „Gib die Daten ein, die geschrieben werden sollen: ", dat$
DRUCKE #1,dat$ + SPACE$(RecLen - LEN(dat$));

ENDIF
LOOP

Der Direktzugriff kann auch bei einer normalen Textdatei genutzt werden. Das hier druckt zum Beispiel eine
Datei rückwärts aus:

OPEN „file.txt” FOR RANDOM AS #1
FOR i = LOF(#1) TO 1 STEP -1

SEEK #1, i
PRINT INPUT$(1, #1);

NEXT i
#1 schließen

Seite54 PicoMite-Benutzerhandbuch

Tonausgabe

Die PicoMite-Firmware kann Stereo-WAV-, FLAC-, MP3- oder MOD-Dateien abspielen, die sich im Flash-
Dateisystem oder auf der SD-Karte befinden, und mit dem Befehl PLAY präzise Sinuswellen erzeugen.

Beachte, dass der Schaltregler auf dem Raspberry Pi Pico zu Störgeräuschen bei der Audioausgabe führen
kann. Diese lassen sich reduzieren, indem man den Regler deaktiviert und das Modul über einen externen
linearen Regler mit Strom versorgt.

Pulsweitenmoduliertes (PWM) Signal
Der Ton wird über PWM-Ausgänge erzeugt. Bevor die PLAY-Befehle verwendet werden können, müssen die
PWM-Ausgangspins als Audioausgänge zugewiesen werden:

Dies geschieht mit dem Befehl OPTION AUDIO wie folgt:
OPTION AUDIO PWM-A-PIN , PWM-B-PIN

Dieser Befehl muss in die Befehlszeile eingegeben werden und wird gespeichert, sodass er nur einmal
ausgeführt werden muss. Beide Pins müssen sich auf demselben PWM-Kanal befinden, wobei PWM-A-PIN
der linke Audiokanal und PWM-B-PIN der rechte ist.

Zum Beispiel:
OPTION AUDIO GP0, GP1

Das Audiosignal wird als pulsweitenmoduliertes (PWM) Signal einer 44-kHz-Rechteckwelle (der sogenannten
Trägerwelle) überlagert. Das heißt, dass ein Tiefpassfilter nötig ist, um die Trägerwelle zu entfernen und das
Audiosignal wiederherzustellen.

Filterschaltungen
Die meisten preisgünstigen Verstärkerlautsprecher (für einen PC) reagieren nicht auf die Trägerfrequenz,
sodass sie selbst als Tiefpassfilter wirken. Wenn du es also einfach halten möchtest, kannst du den PWM-
Ausgang direkt an den Eingang eines Verstärkerlautsprechers anschließen, um eine angemessene Tonausgabe
zu erzielen.

Allerdings kann die hohe Frequenz der 44-kHz-Trägerwelle Probleme für den Verstärker verursachen (z. B.
Überhitzung oder Verzerrung), daher ist der folgende Filter empfehlenswert. Dieser filtert den größten Teil der
Trägerwelle heraus und liefert etwa 2 V Spitze-Spitze (0,6 V RMS) mit einer angemessenen Klangtreue bis zu
8 kHz (mehr als genug für die meisten verstärkten Lautsprecher):

Unten ist eine bessere Schaltung, die hochwertigen Klang mit nur noch einer unbedeutenden Menge an Träger
liefert. Die ist für eine anspruchsvollere HiFi-Verstärker-/Lautsprecherkonfiguration geeignet. Der Ausgang ist
gut für 10 Hz bis 15 kHz bei etwa 3 V Spitze-Spitze (1 V RMS) bei 1 kHz.

PicoMite Benutzerhandbuch Seite 55

Beide Schaltungen sind dafür ausgelegt, einen Verstärker zu speisen (nicht direkt einen Kopfhörer oder
Lautsprecher anzusteuern) und basieren auf einer Kondensatorkopplung in den nachfolgenden Verstärker (die
meisten haben das).

VS1053-Unterstützung
Der Audioausgang kann mit einem VS1053-CODEC-Modul erzeugt werden, das mit dem Befehl

OPTION AUDIO VS1053 CLKpin, MOSIpin, MISOpin, XCSpin, XDCSpin, DREQpin, XRSTpin

Dies erfordert keine Ausgangsfilterung und kann 32-Ω-Kopfhörer direkt ansteuern. Außerdem werden
zusätzliche Wiedergabefunktionen unterstützt.

Wenn ein VS1053-Codec als Audioausgabegerät verwendet wird, stehen zusätzliche Befehle zur Verfügung:
PLAY MP3 file$, interrupt
PLAY MIDIFILE file$, interrupt
MIDI abspielen
PLAY MIDI CMD cmd%, data1% [,data2%]
PLAY NOTE ON Kanal, Note, Anschlagstärke
NOTE OFF spielen Kanal, Note [, Anschlagstärke]
PLAY HALT
PLAY CONTINUE track$
PLAY STREAM buffer%(), readpointer%, writepointer%

Diese Befehle werden im Abschnitt „Befehlsliste” genauer erklärt.

MCP48n2 DAC-
Der Audioausgang kann auch über einen angeschlossenen MCP48n2-DAC (z. B. MCP4822) erzeugt werden.
In diesem Fall wird er mit dem folgenden Befehl konfiguriert:

OPTION AUDIO SPI CS-PIN, CLK-PIN, MOSI-PIN

Der DAC braucht keinen komplizierten Tiefpassfilter, und ein 120-Ω-Widerstand, der mit dem DAC-Ausgang
verbunden ist, wobei das andere Ende des Widerstands über einen 100-nF-Kondensator mit GND verbunden
ist, reicht aus. Wenn ein MCP4822 verwendet wird, sollte der LDAC-Pin am DAC mit GND verbunden
werden.

I2S-DAC
Der Audioausgang kann auch über einen I2S-DAC wie den
PCM5102A erzeugt werden. Der DAC muss die Erstellung eines
eigenen Master-Clocks unterstützen, da dieser nicht von der Firmware
erstellt wird. Der I2S-DAC auf dem Pico2 (RP2350A/B) nutzt PIO2,
um den Ausgang zu erzeugen, sodass dieser nicht verfügbar ist, wenn
der I2S-DAC aktiviert ist. Der I2S-DAC auf dem RP2040 nutzt PIO
0, das bei VGA-Versionen gemeinsam mit dem VGA-PIO genutzt
wird.

Der I2S-DAC wird mit dem folgenden Befehl konfiguriert:
OPTION AUDIO I2S BCLK-PIN, DIN-PIN

Seite56 PicoMite-Benutzerhandbuch

Der I2S-Worttakt (LRCK) liegt dann am nächsten Pin zum BCLK an. Wenn zum Beispiel BCLK auf GP0
gesetzt ist, liegt LRCK an GP1 an. Beide Pins und der DIN-Pin müssen unbenutzt sein, wenn der Befehl
gegeben wird. Normalerweise muss beim DAC-Modul auch ein GND- und ein Stromversorgungs-Pin
angeschlossen werden (normalerweise 5 V).

Der I2S-DAC erzeugt Audio in CD-Qualität aus FLAC-Dateien und gibt MP3-Dateien aus, die nur durch die
inhärente MP3-Komprimierung begrenzt sind. FLAC-Dateien mit bis zu 96000 Hz und 24 Bit wurden getestet.

Wiedergabe von WAV-, FLAC-, MP3- und MOD- -Dateien
Mit dem Befehl PLAY kannst du WAV-, FLAC-, MP3- (nur RP2350) oder MOD-Dateien, die sich im Flash-
Dateisystem oder auf der SD-Karte befinden, über den Audioausgang abspielen. Du kannst damit
Hintergrundmusik abspielen, Programmen Soundeffekte hinzufügen und informative Ansagen machen.

Die Befehle lauten:
WAV-Datei abspielen, Unterbrechung
PLAY FLAC Datei$, Unterbrechung
PLAY MODFILE file$, Unterbrechung
MP3-Datei $ abspielen, Unterbrechung „Nur RP2350

„file$” ist der Name der Audiodatei, die abgespielt werden soll. Sie muss sich im Flash-Dateisystem oder auf
der SD-Karte befinden, und die entsprechende Erweiterung (z. B. .WAV) wird angehängt, wenn sie fehlt. Die
Audiodatei wird im Hintergrund abgespielt (d. h., das Programm läuft ohne Unterbrechung weiter). „interrupt”
ist optional und ist der Name einer Subroutine, die aufgerufen wird, wenn die Datei fertig abgespielt ist.

Sinuswellen erzeugen
Der Befehl PLAY TONE nutzt den Audioausgang, um Sinuswellen mit wählbaren Frequenzen für den linken
und rechten Kanal zu erzeugen. Diese Funktion ist dafür gedacht, um Aufmerksamkeit erregende Töne zu
erzeugen, aber weil die Frequenz sehr genau ist, kann sie auch für viele andere Anwendungen genutzt werden.
Zum Beispiel zum Senden von DTMF-Tönen über eine Telefonleitung oder zum Testen des Frequenzgangs
von Lautsprechern.

Die Syntax des Befehls lautet:
PLAY TONE links, rechts, Dauer, Unterbrechung

„left” und „right” sind die Frequenzen in Hz, die für den linken und rechten Kanal verwendet werden sollen.

Der Ton wird im Hintergrund abgespielt (das Programm läuft nach diesem Befehl weiter) und „duration“ gibt
an, wie viele Millisekunden der Ton erklingen soll. „duration“ ist optional. Wenn es nicht angegeben wird, läuft
der Ton so lange, bis er explizit gestoppt wird oder das Programm beendet wird. „interrupt“ (falls angegeben)
wird ausgelöst, wenn die Dauer abgelaufen ist.

Die angegebene Frequenz kann zwischen 1 Hz und 20 kHz liegen und ist sehr genau (sie basiert auf einem
Quarzoszillator). Die Frequenz kann jederzeit durch einen neuen Befehl PLAY TONE geändert werden.

Verwendung von PLAY
Es ist wichtig zu wissen, dass der Befehl PLAY den Ton im Hintergrund erzeugt. Dadurch kann ein Programm
(zum Beispiel) den Klang einer Glocke abspielen, während es seine Steuerungsfunktion weiter ausführt. Ohne
die Hintergrundfunktion würde das gesamte BASIC-Programm während der Tonwiedergabe einfrieren.

Die Erzeugung des Tons im Hintergrund hat jedoch einige subtile Auswirkungen, die Neulinge verwirren
können. Nehmen wir zum Beispiel das folgende Programm:

PLAY TONE 500, 500, 2000
END

Man könnte erwarten, dass der 500-Hz-Ton 2 Sekunden lang zu hören ist, aber in der Praxis wird überhaupt
kein Ton zu hören sein. Das liegt daran, dass MMBasic den Befehl PLAY TONE ausführt (der die
Tonwiedergabe im Hintergrund startet) und dann sofort den Befehl END ausführt, der das Programm und den
Hintergrundton beendet. Dies geschieht so schnell, dass nichts zu hören ist.

Das folgende Programm funktioniert auch nicht:
PLAY TONE 500, 500, 2000
PLAY TONE 300, 300, 5000

Das liegt daran, dass der erste Befehl einen Ton mit 500 Hz einstellt, der zweite PLAY-Befehl diesen aber
sofort durch einen Ton mit 300 Hz ersetzt, woraufhin das Programm zu Ende läuft und beendet wird (und der
Hintergrundton ebenfalls), sodass nichts zu hören ist.

PicoMite Benutzerhandbuch Seite 57

Wenn du möchtest, dass MMBasic wartet, während der PLAY-Befehl ausgeführt wird, solltest du geeignete
PAUSE-Befehle verwenden. Zum Beispiel:

PLAY TONE 500, 500 : PAUSE 2000
PLAY TONE 300, 300 : PAUSE 5000
PLAY STOP

Das gilt für alle Versionen des Befehls PLAY, einschließlich PLAY WAV.

Dienstprogramme
Es gibt eine Reihe von Befehlen, mit denen du die Tonausgabe verwalten kannst:

PLAY PAUSE Hält die aktuell abgespielte Datei oder den Ton vorübergehend an (Pause).

PLAY RESUME Setzt die Wiedergabe einer zuvor angehaltenen Datei oder eines Tons fort.

PLAY NEXT Die nächste WAV-, MP3- oder FLAC-Datei in einem Verzeichnis abspielen.

VORHERIGE WIEDERGABE Spiel die vorherige WAV-, MP3- oder FLAC-Datei in einem Verzeichnis ab.

STOPP Beende die Wiedergabe der Datei oder des Tons, genau wie wenn das Programm
beendet wird.

LAUTSTÄRKE L, R Stell die Lautstärke zwischen 0 und 100 ein, wobei 100 die maximale Lautstärke
ist. Die Lautstärke wird auf den maximalen Pegel zurückgesetzt, wenn ein
Programm ausgeführt wird. Es wird eine logarithmische Skala verwendet, sodass
PLAY VOLUME 50,50 halb so laut wie 100,100 klingen sollte.

Spezielle Audioausgabe
Der Befehl PLAY SOUND erzeugt eine Ausgabe, die auf einer Mischung aus Sinus-, Rechteck- und anderen
Wellenformen basiert. Details findest du in der Befehlsliste.

Seite58 PicoMite-Benutzerhandbuch

Verwendung der I/O-Pins

Der Raspberry Pi Pico verfügt über 26 Ein-/Ausgangspins, die vom BASIC-Programm aus gesteuert werden
können, wobei 3 davon einen Hochgeschwindigkeits-ADC (Analog-Digital-Wandler) unterstützen.

Ein I/O-Pin wird anhand seiner Pin-Nummer bezeichnet, die entweder eine Zahl (z. B. 2) oder eine GP-
Nummer (z. B. GP1) sein kann.

Digitale Eingänge

Ein digitaler Eingang ist die einfachste Art der Eingangskonfiguration. Wenn die Eingangsspannung höher als
2,5 V ist, ist der Logikpegel wahr (numerischer Wert 1), und alles unter 0,65 V ist falsch (numerischer Wert 0).
Die Eingänge nutzen einen Schmitt-Trigger-Eingang, sodass alles zwischen diesen Pegeln den vorherigen
Logikpegel beibehält.

Beachte, dass die maximale Spannung an den RP2040-I/O-Pins (d. h. dem Raspberry Pi Pico) 3,3 V beträgt.
Wenn ein Gerät 5-V-Pegel für die Signalübertragung nutzt, ist eine Pegelumsetzung nötig. Der Raspberry Pi
Pico 2 mit dem RP2350 kann 5 V vertragen (wenn er mit Strom versorgt wird), sodass in diesem Fall keine
Pegelumsetzung für Signale bis zu 5 V nötig ist.

In deinem BASIC-Programm würdest du den Eingang als digitalen Eingang festlegen und die Funktion PIN()
verwenden, um seinen Pegel zu ermitteln. Zum Beispiel:

SETPIN GP4, DIN
IF PIN(GP4) = 1 THEN PRINT "High"

Der Befehl SETPIN konfiguriert den Pin GP4 als digitalen Eingang, und die Funktion PIN() gibt den Wert
dieses Pins zurück (die Zahl 1, wenn der Pin hoch ist). Der Befehl IF führt dann den Befehl nach der THEN-
Anweisung aus, wenn der Eingang hoch war. Wenn der Eingangspin niedrig war, würde das Programm einfach
mit der nächsten Zeile im Programm fortfahren.

Der Befehl SETPIN erkennt auch ein paar Optionen, die einen internen Widerstand vom Eingang entweder mit
der Versorgung oder mit Masse verbinden. Dies wird als „Pullup”- oder „Pulldown”-Widerstand bezeichnet
und ist praktisch, wenn eine Verbindung zu einem Schalter hergestellt wird, da dadurch die Installation eines
externen Widerstands zur Anlegung einer Spannung an die Kontakte entfällt. Wegen eines Hardwareproblems
mit dem RP2350-Prozessor wird empfohlen, einen externen Widerstand von 8,2 K oder weniger zu verwenden,
wenn ein Pulldown für diesen Prozessor nötig ist.

Analoge Eingänge

Pins, die als ADC gekennzeichnet sind, können so konfiguriert werden, dass sie die Spannung am Pin messen.
Der Eingangsbereich reicht von null bis 3,3 V, und die Funktion PIN() gibt die Spannung zurück. Beispiel:

> SETPIN 31, AIN
> PRINT PIN(31)
 2,345
>

Wenn du Spannungen über 3,3 V messen willst, brauchst du einen Spannungsteiler. Bei kleinen Spannungen
musst du vielleicht einen Verstärker verwenden, um die Eingangsspannung in einen für die Messung
geeigneten Bereich zu bringen.

Die Messung nutzt die 3,3-V-Stromversorgung der CPU als Referenz und geht davon aus, dass diese genau 3,3
V beträgt. Dieser Wert kann mit dem Befehl OPTION VCC geändert werden. Um den bestmöglichen Messwert
zu erhalten, wird der analoge Eingang 10 Mal abgetastet. Die Werte werden dann sortiert, die beiden höchsten
und die beiden niedrigsten Werte verworfen und die verbleibenden 6 Werte gemittelt.

Wenn du den direkten Messwert vom ADC haben willst, kannst du den Raw-Modus verwenden, indem du die
Option ARAW zum Befehl SETPIN hinzufügst:

SETPIN pinno,ARAW

In diesem Fall wird ein Wert zwischen 0 und 4095 basierend auf einer einzigen Abtastung zurückgegeben.

Die ADC-Befehle bieten eine alternative Methode zur Aufzeichnung analoger Eingänge und sind für die
schnelle Aufzeichnung vieler Messwerte in einem Array gedacht.

PicoMite Benutzerhandbuch Seite 59

Zähleingänge

Beliebige vier Pins können als Zähleingänge verwendet werden, um die Frequenz und Periode zu messen oder
einfach nur die Impulse am Eingang zu zählen. Die für diese Funktion verwendeten Pins können mit dem
Befehl OPTION COUNT konfiguriert werden, wenn sie aber nicht geändert werden, sind standardmäßig GP6,
GP7, GP8 und GP9 eingestellt.

Als Beispiel gibt der folgende Befehl die Frequenz des Signals an Pin GP7 aus:

> SETPIN GP7, FIN
> PRINT PIN(GP7)
110374
>

In diesem Fall beträgt die Frequenz 110,374 kHz.

Standardmäßig beträgt die Gate-Zeit eine Sekunde. Dies ist die Zeitspanne, die MMBasic zum Zählen der
Zyklen am Eingang benötigt. Das bedeutet, dass der Messwert einmal pro Sekunde mit einer Auflösung von 1
Hz aktualisiert wird. Durch Angabe eines dritten Arguments für den Befehl SETPIN kann eine alternative
Gate-Zeit zwischen 10 ms und 100000 ms festgelegt werden. Kürzere Zeiten führen dazu, dass die Messwerte
häufiger aktualisiert werden, aber der zurückgegebene Wert hat eine geringere Auflösung. Die Funktion PIN()
skaliert die zurückgegebene Zahl immer als Frequenz in Hz, unabhängig von der verwendeten Gate-Zeit.

Im Folgenden wird beispielsweise die Gate-Zeit auf 10 ms eingestellt, was mit einem entsprechenden Verlust
an Auflösung einhergeht:

> SETPIN GP7, FIN, 10
> PRINT PIN(GP7)
110300
>

Für genaue Messungen von Signalen unter 10 Hz ist es normalerweise besser, die Periode des Signals zu
messen. Wenn dieser Modus eingestellt ist, misst die PicoMite-Firmware die Anzahl der Millisekunden
zwischen aufeinanderfolgenden steigenden Flanken des Eingangssignals. Der Wert wird beim Übergang von
niedrig nach hoch aktualisiert. Wenn dein Signal also eine Periode von (sagen wir) 100 Sekunden hat, solltest
du bereit sein, diese Zeit abzuwarten, bevor die Funktion PIN() einen aktualisierten Wert zurückgibt.

Die Zählpins können auch die Anzahl der Impulse an ihrem Eingang zählen. Wenn ein Pin als Zähler
konfiguriert ist (z. B. SETPIN 7,CIN), wird der Zähler auf Null zurückgesetzt und die PicoMite-Firmware
zählt dann jeden Übergang von einer niedrigen zu einer hohen Spannung. Der Zähler kann durch Ausführen
von PIN(7) = 0 wieder auf Null zurückgesetzt werden.

Die Zähleingänge sind bei der Standardfrequenz des Prozessors bis zu etwa 200 kHz genau. Zum Auslösen des
Zählers ist eine minimale Impulsbreite von etwa 40 nS erforderlich. Der RP2350 bietet außerdem die
Möglichkeit, GP1 als extrem schnellen Frequenzzähl-Pin zu konfigurieren (siehe Befehl SETPIN GP1, FFIN).

Digitale Ausgänge

Alle I/O-Pins können mit dem Parameter DOUT des Befehls SETPIN als digitaler Ausgang konfiguriert
werden. Beispiel:

SETPIN GP15, DOUT

Das heißt, wenn ein Ausgangspin auf logisch niedrig gesetzt wird, zieht er seinen Ausgang auf Null, und wenn
er auf hoch gesetzt wird, zieht er seinen Ausgang auf 3,3 V. In MMBasic machst du das mit dem Befehl PIN.
Zum Beispiel setzt PIN(GP15) = 0 den Pin GP15 auf niedrig, während PIN(GP15) = 1 ihn auf hoch
setzt.

Pulsweitenmodulation
Mit dem Befehl PWM (Pulsweitenmodulation) kann die PicoMite-Firmware Rechteckwellen mit einem
programmgesteuerten Tastverhältnis erzeugen.

Durch Variieren des Tastverhältnisses kannst du eine programmgesteuerte Ausgangsspannung erzeugen, die
zur Steuerung externer Geräte verwendet werden kann, die einen analogen Eingang benötigen (Netzteile,
Motorsteuerungen usw.). Die PWM-Ausgänge sind auch nützlich zum Ansteuern von Servos und zum
Erzeugen einer Tonausgabe über einen kleinen Wandler.

Seite60 PicoMite-Benutzerhandbuch

RP2040 Die PWM-Ausgänge bestehen aus bis zu 8 Kanälen (nummeriert von 0 bis 7), wobei jeder Kanal
über zwei Ausgänge (A und B) verfügt. Für jeden Kanal kann die Frequenz ausgewählt und für
jeden Ausgang ein anderer Tastgrad eingestellt werden. Mit dem Befehl SETPIN können bis zu 16
Pins als PWM-Ausgänge konfiguriert werden.

RP2350 Der RP2350 unterstützt bis zu 12 PWM-Kanäle (nummeriert von 0 bis 11) und bis zu 24 Pins
können mit dem Befehl SETPIN als PWM-Ausgänge konfiguriert werden.

Kommunikationsschnittstellen (seriell, SPI und I2C)
Diese sind in den Anhängen am Ende dieses Handbuchs beschrieben. Bevor diese Schnittstellen genutzt
werden können, müssen die Pins, die für die entsprechenden Signale verwendet werden sollen, mit dem Befehl
SETPIN konfiguriert werden.

Einige Geräte wie SD-Karten, LCD-Bildschirme, Touchscreens usw. nutzen auch SPI- oder I2C-Schnittstellen,
und die dafür verwendeten Pins müssen ebenfalls mit dem Befehl OPTION SYSTEM konfiguriert werden,
bevor sie genutzt werden können.

Interrupts

Interrupts sind eine praktische Möglichkeit, um mit Ereignissen umzugehen, die zu einem unvorhersehbaren
Zeitpunkt auftreten können. Ein Beispiel hierfür ist das Drücken einer Taste durch den Benutzer. In Ihrem
Programm könnten Sie nach jeder Anweisung einen Code einfügen, um zu überprüfen, ob die Taste gedrückt
wurde, aber ein Interrupt sorgt für ein übersichtlicheres und besser lesbares Programm.

Wenn ein Interrupt auftritt, führt MMBasic eine definierte Subroutine aus und kehrt nach Abschluss zum
Hauptprogramm zurück. Das Hauptprogramm nimmt den Interrupt überhaupt nicht wahr und läuft normal
weiter.

Jeder I/O-Pin, der als digitaler Eingang genutzt werden kann, kann mit dem Befehl SETPIN so konfiguriert
werden, dass er einen Interrupt erzeugt, wobei bis zu zehn Interrupts gleichzeitig aktiv sein können. Interrupts
können so eingerichtet werden, dass sie bei einem steigenden oder fallenden digitalen Eingangssignal (oder
beidem) auftreten und einen sofortigen Sprung zu der angegebenen benutzerdefinierten Subroutine
verursachen. Das Ziel kann für jeden Interrupt gleich oder unterschiedlich sein. Die Rückkehr aus einem
Interrupt erfolgt über die Befehle END SUB oder EXIT SUB. Beachte, dass keine Parameter an die
Unterroutine übergeben werden können, jedoch sind innerhalb des Interrupts Aufrufe anderer Unterroutinen
und Funktionen erlaubt.

Wenn zwei oder mehr Interrupts gleichzeitig auftreten, werden sie in der unten definierten Reihenfolge
verarbeitet. Während der Verarbeitung eines Interrupts werden alle anderen Interrupts deaktiviert, bis die
Interrupt-Subroutine zurückkehrt. Während eines Interrupts (und zu jeder Zeit) kann mit der Funktion PIN() auf
den Wert des Interrupt-Pins zugegriffen werden.

Interrupts können jederzeit auftreten, werden aber während INPUT-Anweisungen deaktiviert. Außerdem
werden Interrupts während einiger langer hardwarebezogener Vorgänge (z. B. der Funktion TEMPR(), LCD-
Zeichenbefehlen und SD-Zugriffsbefehlen) nicht erkannt, obwohl sie erkannt werden, wenn sie nach
Beendigung des Vorgangs noch vorhanden sind. Bei der Verwendung von Interrupts wird das Hauptprogramm
von der Interrupt-Aktivität völlig unberührt, es sei denn, eine vom Hauptprogramm verwendete Variable wird
während des Interrupts geändert.

Da Interrupts im Hintergrund laufen, können sie schwer zu diagnostizierende Fehler verursachen. Beachte bei
der Verwendung von Interrupts die folgenden Faktoren:

 Interrupts werden von MMBasic nur nach Abschluss jedes Befehls überprüft und nicht von der Hardware
zwischengespeichert. Das bedeutet, dass ein Interrupt, der nur kurz dauert, übersehen werden kann,
insbesondere wenn das Programm Befehle ausführt, deren Ausführung einige Zeit in Anspruch nimmt.
Die meisten Befehle werden in weniger als 15 µs ausgeführt, aber einige Befehle, wie z. B. die Funktion
TEMPR(), können bis zu 200 ms dauern, sodass ein Interrupt innerhalb dieses Zeitfensters auftreten und
wieder verschwinden kann und somit nicht erkannt wird.

 Während eines Interrupts werden alle anderen Interrupts blockiert, daher sollten deine Interrupts kurz
sein und so schnell wie möglich beendet werden. Verwende zum Beispiel niemals PAUSE innerhalb
eines Interrupts. Wenn du längere Verarbeitungsvorgänge durchführen musst, solltest du einfach ein Flag
setzen und den Interrupt sofort beenden, dann kann deine Hauptprogrammschleife das Flag erkennen und
die erforderlichen Maßnahmen ergreifen.

 Die Subroutine, die der Interrupt aufruft (und alle anderen Subroutinen oder Funktionen, die von ihr
aufgerufen werden), sollte immer exklusiv für den Interrupt sein. Wenn du eine Subroutine aufrufen

PicoMite Benutzerhandbuch Seite 61

musst, die auch von einem Interrupt verwendet wird, musst du den Interrupt zuerst deaktivieren (du
kannst ihn wieder aktivieren, nachdem du die Subroutine beendet hast).

 Denk daran, einen Interrupt zu deaktivieren, wenn du ihn nicht mehr brauchst – Hintergrund-Interrupts
können seltsame und nicht intuitive Fehler verursachen.

Zusätzlich zu den Interrupts, die durch die Zustandsänderung eines E/A-Pins erzeugt werden, kann ein Interrupt
auch durch andere Bereiche von MMBasic erzeugt werden, darunter Timer und Kommunikationsports, und die
obigen Hinweise gelten auch für diese.

Die Liste aller dieser Interrupts (in der Reihenfolge ihrer Priorität von hoch nach niedrig) lautet:

1. PID-Regelkreise

2. ON KEY individuell
3. ON KEY allgemein
4. ON PS2
5. PIO RX FIFO
6. PIO TX FIFO
7. PIO RX DMA-Abschluss
8. PIO TX DMA-Abschluss
9. GUI Int Down
10. GUI Int Up
11. Sprite-Kollision
12. WebMite: TCP-Empfang
13. WebMite: MQTT-Abschluss
14. WebMite: UDP-Empfang
15. USB-Gamecontroller/USB- oder PS2-Maus/Wii-Controller
16. ADC-Abschluss
17. I2C-Slave-Empfang
18. I2C-Slave-Tx
19. I2C2-Slave-Empfang
20. I2C2-Slave-Tx
21. WAV fertig
22. COM1: Serielle Schnittstelle
23. COM2: Serieller Anschluss
24. IR-Empfang
25. Tastatur
26. Interrupt-Befehl/CSub-Interrupt
27. I/O-Pin-Interrupts in der Reihenfolge ihrer Definition
28. Tick-Interrupts (1 bis 4 in dieser Reihenfolge)

Ein Beispiel: Wenn ein ON KEY-Interrupt gleichzeitig mit einem COM1:-Interrupt auftritt, wird zuerst die ON
KEY-Interrupt-Subroutine ausgeführt. Sobald die Interrupt-Subroutine fertig ist, wird die COM1:-Interrupt-
Subroutine ausgeführt.

Seite62 PicoMite-Benutzerhandbuch

Unterstützung spezieller Geräte

Um die Interaktion eines Programms mit der Außenwelt zu vereinfachen, enthält die PicoMite-Firmware
Treiber für eine Reihe gängiger Peripheriegeräte.

Das sind:

 Infrarot-Fernbedienungsempfänger und -sender

 Der Temperatursensor DS18B20 und der Temperatur-/Feuchtigkeitssensor DHT22

 LCD-Anzeigemodule

 Numerische Tastaturen

 Batteriegepufferte Uhr

 Ultraschall-Abstandssensor

 WS2812-RGB-LEDs

Infrarot-Fernbedienungsdecoder
Mit dem IR-Befehl kannst du ganz einfach eine Fernbedienung zu deinem Projekt hinzufügen. Wenn diese
Funktion aktiviert ist, läuft sie im Hintergrund und unterbricht das laufende Programm, sobald eine Taste auf
der IR-Fernbedienung gedrückt wird.

Sie funktioniert mit allen NEC- oder Sony-kompatiblen
Fernbedienungen, auch mit solchen, die erweiterte
Nachrichten generieren. Die meisten günstigen
programmierbaren Fernbedienungen generieren eines
dieser Protokolle, und mit einer davon kannst du deinem
Pico-basierten Projekt eine raffinierte Note verleihen.

Das NEC-Protokoll wird auch von vielen anderen
Herstellern wie Apple, Pioneer, Sanyo, Akai und Toshiba
verwendet, sodass deren Markenfernbedienungen
verwendet werden können.

Um das IR-Signal zu erkennen, brauchst du einen IR-
Empfänger. NEC-Fernbedienungen verwenden eine 38-kHz-Modulation des IR-Signals. Geeignete Empfänger,
die auf diese Frequenz abgestimmt sind, sind beispielsweise der Vishay TSOP4838, der Jaycar ZD1952 und der
Altronics Z1611A. Beachte, dass die I/O-Pins des Raspberry Pi Pico nur 3,3 V vertragen und der Empfänger
daher mit maximal 3,3 V betrieben werden muss. Der Raspberry Pi Pico 2 ist anders und kann 5 V vertragen.

Wichtiger Hinweis: Wegen eines Hardwarefehlers im RP2350 vor der Version A4 ist es echt wichtig, einen
4K7-Pullup-Widerstand zur Datenleitung des IR-Empfängers hinzuzufügen, wenn du den RP2350 benutzt.

Sony-Fernbedienungen nutzen eine 40-kHz-Modulation, aber Empfänger für diese Frequenz sind manchmal
schwer zu finden. Normalerweise funktionieren auch 38-kHz-Empfänger, aber die maximale Empfindlichkeit
wird mit einem 40-kHz-Empfänger erreicht.

Der IR-Empfänger kann an jeden Pin des Raspberry Pi Pico angeschlossen werden. Dieser Pin muss vom
Programm mit dem folgenden Befehl konfiguriert werden:

SETPIN n, IR

wobei n der für diese Funktion zu verwendende I/O-Pin ist.

Um den Decoder einzurichten, benutzt man den Befehl:
IR dev, key, interrupt

Dabei ist dev eine Variable, die mit dem Gerätecode aktualisiert wird, und key ist die Variable, die mit dem
Schlüsselcode aktualisiert wird. Interrupt ist die Interrupt-Subroutine, die aufgerufen wird, wenn ein neuer
Tastendruck erkannt wird. Die IR-Decodierung läuft im Hintergrund und das Programm läuft nach diesem
Befehl ohne Unterbrechung weiter.

Hier ist ein Beispiel für die Verwendung des IR-Decoders, der an den GP6-Pin angeschlossen ist:
SETPIN GP6, IR ' Pin festlegen, der benutzt
werden soll
DIM INTEGER DevCode, KeyCode ' vom Decoder verwendete Variablen
IR DevCode, KeyCode, IRInt ' IR-Decoder starten

PicoMite Benutzerhandbuch Seite 63

DO
 ' < Hauptteil des Programms >
LOOP

SUB IRInt ' Eine Taste wurde gedrückt
 PRINT „Empfangenes Gerät = “ DevCode „ Taste = “ KeyCode
END SUB

IR-Fernbedienungen können viele verschiedene Geräte (Videorekorder, Fernseher usw.) ansteuern, daher
überprüft das Programm normalerweise zuerst den Gerätecode, um festzustellen, ob das Signal für das
Programm bestimmt ist, und führt dann, falls dies der Fall ist, die entsprechende Aktion basierend auf der
gedrückten Taste aus. Es gibt viele verschiedene Geräte und Tastencodes, daher ist die beste Methode, um
festzustellen, welche Codes Ihre Fernbedienung generiert, die Verwendung des oben genannten Programms,
um die Codes zu ermitteln.

Infrarot-Fernbedienungssender
Mit dem Befehl IR SEND kannst du ein 12-Bit-Infrarot-
Fernbedienungssignal von Sony senden. Das ist für die
Kommunikation zwischen Raspberry Pi Pico und Raspberry Pi Pico
oder Micromite gedacht, funktioniert aber auch mit Sony-Geräten,
die 12-Bit-Codes verwenden. Beachte, dass bei allen Sony-
Produkten die Nachricht dreimal mit einer Verzögerung von 26 ms
zwischen den einzelnen Nachrichten gesendet werden muss.

Die Schaltung auf der rechten Seite zeigt, was dafür nötig ist. Der
Transistor wird zum Ansteuern der Infrarot-LED verwendet, weil
die Ausgangsleistung des Raspberry Pi Pico begrenzt ist. Diese
Schaltung liefert etwa 50 mA an die LED.

Um ein Signal zu senden, benutzt man den Befehl:
IR SEND pin, dev, key

Dabei ist pin der verwendete I/O-Pin, dev der zu sendende Gerätecode und key der Schlüsselcode. Du kannst
jeden beliebigen I/O-Pin des Raspberry Pi Pico verwenden und musst ihn nicht vorher einrichten (das macht IR
SEND automatisch).

Die verwendete Modulationsfrequenz beträgt 38 kHz und entspricht den gängigen IR-Empfängern (siehe
vorherige Seite), um eine maximale Empfindlichkeit bei der Kommunikation zwischen zwei Raspberry Pi Picos
oder mit einem Micromite zu erreichen.

Temperatur messen
Die Funktion TEMPR() misst die Temperatur mit einem DS18B20-
Temperatursensor. Dieses Gerät kann bei eBay für etwa 5 US-Dollar in
verschiedenen Ausführungen gekauft werden, darunter auch eine
wasserdichte Sonde.

Der DS18B20 kann separat mit einer 3,3-V-Stromversorgung betrieben
werden oder, wie rechts gezeigt, mit der parasitären Stromversorgung des
Raspberry Pi Pico. Es können mehrere Sensoren verwendet werden, aber
für jeden Sensor ist ein separater I/O-Pin und ein 4,7-K-Pullup-Widerstand
erforderlich.

Um die aktuelle Temperatur zu ermitteln, verwendest du einfach die Funktion TEMPR() in einem Ausdruck.
Beispiel:

PRINT "Temperatur: " TEMPR(Pin)

Dabei ist „pin” der I/O-Pin, an den der Sensor angeschlossen ist. Du musst
den I/O-Pin nicht konfigurieren, das übernimmt MMBasic.

Der zurückgegebene Wert ist in Grad Celsius mit einer Auflösung von
0,25 ºC und hat eine Genauigkeit von ±0,5 ºC. Wenn während der
Messung ein Fehler auftritt, ist der zurückgegebene Wert 1000.

Die gesamte Messung dauert 200 ms, und das laufende Programm wird für
diesen Zeitraum angehalten, während die Messung durchgeführt wird. Das
bedeutet auch, dass Interrupts für diesen Zeitraum deaktiviert werden.

Seite64 PicoMite-Benutzerhandbuch

Wenn du das nicht willst, kannst du die Umwandlung separat mit dem Befehl TEMPR START auslösen und
später die Funktion TEMPR() verwenden, um den Temperaturwert abzurufen. Die Funktion TEMPR() wartet
immer, wenn der Sensor noch mit der Messung beschäftigt ist.

Beispiel:
TEMPR START GP15
< andere Aufgaben ausführen >
PRINT „Temperatur: “ TEMPR(GP15)

Mit dem Befehl TEMPR START kannst du auch die Auflösung der Messung (von standardmäßig 0,25 ºC) und
die dazugehörige Umwandlungszeit ändern.

PicoMite Benutzerhandbuch Seite 65

Messung von Luftfeuchtigkeit und Temperatur
Der Befehl HUMID liest die Luftfeuchtigkeit und Temperatur
von einem DHT22-Feuchtigkeits-/Temperatursensor ab. Dieses
Gerät wird auch als RHT03 oder AM2302 verkauft, aber alle sind
kompatibel und können bei eBay für unter 5 US-Dollar erworben
werden. Der DHT11-Sensor wird ebenfalls unterstützt.

Der DHT22 muss mit 3,3 V (oder bis zu 5 V mit dem Raspberry
Pi Pico 2) betrieben werden und sollte wie abgebildet über einen
Pullup-Widerstand auf der Datenleitung verfügen. Dies ist für
lange Kabelwege (bis zu 20 Meter) geeignet, bei kurzen
Kabelwegen kann der Widerstand jedoch weggelassen werden, da
die PicoMite-Firmware auch einen internen schwachen Pullup bereitstellt.

 Um die Temperatur oder Luftfeuchtigkeit zu ermitteln, verwenden Sie den Befehl HUMID mit drei
Argumenten wie folgt:

HUMID pin, tVar, hVar [,DHT11]

Dabei ist „pin” der I/O-Pin, an den der Sensor angeschlossen ist. Der I/O-Pin wird automatisch von MMBasic
konfiguriert.

„tVar” ist eine Gleitkommavariable, in der die Temperatur zurückgegeben wird, und „hVar” ist eine zweite
Variable für die Luftfeuchtigkeit. Die Temperatur wird in Grad Celsius mit einer Auflösung von einer
Dezimalstelle (z. B. 23,4) zurückgegeben, und die Luftfeuchtigkeit wird als relative Luftfeuchtigkeit in Prozent
(z. B. 54,3) zurückgegeben.

Wenn der optionale Parameter „DHT11” auf 1 gesetzt ist, verwendet der Befehl die für dieses Gerät geeigneten
Gerätetimings. In diesem Fall werden die Ergebnisse mit einer Auflösung von 1 Grad und 1 % Luftfeuchtigkeit
zurückgegeben.

Dieses Beispiel zeigt, wie man mit dem DHT22 die aktuelle Temperatur und Luftfeuchtigkeit jede Sekunde
anzeigen kann:

DIM FLOAT temp, humidity
DO
 HUMID GP15, temp, humidity
 PRINT „Die Temperatur beträgt“ temp „und die Luftfeuchtigkeit beträgt“
humidity
 PAUSE 1000
LOOP

Echtzeituhr-Schnittstelle
Mit dem Befehl RTC GETTIME kannst du ganz einfach die aktuelle Uhrzeit von einer Echtzeituhr vom Typ
PCF8563, DS1307, DS3231 oder DS3232 sowie von kompatiblen Geräten wie dem M41T11 abrufen. Diese
integrierten Schaltkreise sind beliebt und günstig, zeigen auch bei ausgeschaltetem Gerät die genaue Uhrzeit an
und sind bei eBay für 2 bis 8 US-Dollar erhältlich. Komplette Module inklusive Batterie kann man bei eBay
für etwas mehr Geld kaufen.

Der PCF8563 und der DS1307 halten die Zeit über einen Monat hinweg auf eine oder zwei Minuten genau,
während der DS3231 und der DS3232 besonders präzise sind und über ein Jahr hinweg auf eine Minute genau
bleiben.

Die Firmware V6.01.01 oder höher unterstützt den RV3028, der eine Genauigkeit von ±1 ppm (30 Sekunden
pro Jahr) bietet.

Diese Chips sind I2C-Geräte und sollten an die I2C-I/O-Pins des Raspberry Pi Pico angeschlossen werden.

An den I2C-I/O-Pins sind interne Pullup-Widerstände (100 kΩ) angebracht, sodass in den meisten Fällen keine
externen Widerstände nötig sind.

Um die RTC zu aktivieren, musst du zuerst die zu verwendenden I2C-Pins mit dem folgenden Befehl zuweisen:
OPTION SYSTEM I2C SDApin, SCLpin

Die vom RTC verwendete Zeit muss ebenfalls eingestellt werden. Dies geschieht mit dem Befehl RTC
SETTIME, der das folgende Format verwendet:

RTC SETTIME Jahr, Monat, Tag, Stunde, Minute, Sekunde

Beachte, dass die Stunde im 24-Stunden-Format angegeben werden muss.

Seite66 PicoMite-Benutzerhandbuch

Mit dem folgenden Befehl stellst du die Echtzeituhr zum Beispiel auf 16 Uhr am 10. November 2025 ein:
RTC SETTIME 2025, 11, 10, 16, 0, 0

Um die Uhrzeit abzurufen, benutzt man den Befehl RTC GETTIME, der die Uhrzeit vom Echtzeituhr-Chip
liest und die Uhr im Raspberry Pi Pico einstellt. Normalerweise wird dieser Befehl am Anfang des Programms
oder in der Subroutine MM.STARTUP platziert, damit die Uhrzeit beim Einschalten eingestellt wird.

Mit dem Befehl OPTION RTC AUTO ENABLE kannst du auch eine automatische Aktualisierung der
schreibgeschützten Variablen TIME$ und DATE$ aus dem Echtzeituhr-Chip beim Booten und jede Stunde
einstellen.

PicoMite Benutzerhandbuch Seite 67

Entfernungsmessung
Mit einem HC-SR04-Ultraschallsensor und der Funktion DISTANCE()
kannst du die Entfernung zu einem Ziel messen.

Dieses Gerät ist bei eBay für etwa 4 US-Dollar erhältlich und misst die
Entfernung zu einem Ziel von 3 cm bis 3 m. Es sendet einen
Ultraschallimpuls aus und misst die Zeit, die das Echo benötigt, um
zurückzukommen.

Kompatible Sensoren sind der SRF05, SRF06, Parallax PING und der DYP-
ME007 (der wasserdicht ist und sich daher gut zur Überwachung des
Füllstands eines Wassertanks eignet). Andere, die laut Berichten gut
funktionieren, verwenden den CS100-Chip – wie beispielsweise der HC-
SR04 und US-025.

In der PicoMite-Firmware benutzt man die DISTANCE-Funktion wie folgt:
d = DISTANCE(trig, echo)

Der zurückgegebene Wert ist die Entfernung zum Ziel in Zentimetern.

Dabei ist trig der I/O-Pin, der mit dem Eingang „trig” des Sensors verbunden ist, und echo der Pin, der mit dem
Ausgang „echo” des Sensors verbunden ist. Du kannst auch 3-Pin-Geräte verwenden. In diesem Fall wird nur
eine Pin-Nummer angegeben.

Beachte, dass die maximale Spannung an allen I/O-Pins des Raspberry Pi Pico 3,3 V beträgt. Für diesen Sensor
ist eine Pegelverschiebung erforderlich, da er für seine Echoausgabe 5-V-Pegel verwendet. Der Raspberry Pi
Pico 2 verträgt 5 V (bei eingeschaltetem Gerät), sodass in diesem Fall keine Pegelverschiebung erforderlich ist.

LCD-Anzeige
Der LCD-Befehl zeigt Text auf einem Standard-LCD-Modul mit
minimalem Programmieraufwand an.

Dieser Befehl funktioniert mit LCD-Modulen, die den Controller-Chip
KS0066, HD44780 oder SPLC780 verwenden und über 1, 2 oder 4
Zeilen verfügen. Typische Displays sind das LCD16X2 (futurlec.com),
das Z7001 (altronics.com.au) und das QP5512 (jaycar.com.au). eBay ist
eine weitere gute Quelle, wo die Preise zwischen 10 und 50 Dollar liegen
können.

Zum Einrichten des Displays benutzt man den Befehl DEVICE LCD
INIT:

LCD INIT d4, d5, d6, d7, rs, en

d4, d5, d6 und d7 sind die Nummern der I/O-Pins, die mit den Eingängen D4, D5, D6 und D7 auf dem LCD-
Modul verbunden sind (die Eingänge D0 bis D3 und R/W auf dem Modul sollten mit Masse verbunden sein).
„rs” ist der Pin, der mit dem Registerauswahleingang des Moduls verbunden ist (manchmal auch als CMD oder
DAT bezeichnet). „en” ist der Pin, der mit dem Freigabe- oder Chipauswahleingang des Moduls verbunden ist.

Du kannst jeden beliebigen I/O-Pin auf dem Raspberry Pi Pico verwenden und musst ihn nicht vorher
einrichten (das macht der LCD-Befehl automatisch für dich). Hier siehst du eine typische Konfiguration.

Seite68 PicoMite-Benutzerhandbuch

Um Zeichen auf dem Modul anzuzeigen, benutzt du den LCD-Befehl:
LCD Zeile, Position, Daten$

Dabei ist „line“ die Zeile auf dem Display (1 bis 4) und „pos“ die Position auf der Zeile, an der die Daten
geschrieben werden sollen (die erste Position auf der Zeile ist 1). „data$“ ist eine Zeichenfolge, die die Daten
enthält, die auf das LCD-Display geschrieben werden sollen. Die Zeichen in „data$“ überschreiben alles, was
sich zuvor an dieser Stelle auf dem LCD befand.

Hier ist ein typisches Beispiel, wo d4 bis d7 an die Pins GP2 bis GP5 angeschlossen sind, rs an Pin GP6 und en
an Pin GP7.

LCD INIT GP2, GP3, GP4, GP5, GP6, GP7
LCD 1, 2, „Temperature”
LCD 2, 6, STR$(TEMPR(GP15)) ' DS18B20 mit Pin GP15 verbunden

Beachte, dass dieses Beispiel auch die Funktion TEMPR() verwendet, um die Temperatur zu ermitteln (wie
oben beschrieben).

Tastatur-Schnittstelle

Eine Tastatur ist eine einfache, aber effektive Methode zur Eingabe numerischer Daten. Die PicoMite-
Firmware unterstützt entweder eine 4x3-Tastatur oder eine 4x4-Tastatur, und die Überwachung und
Dekodierung der Tastendrücke erfolgt im Hintergrund. Wenn ein Tastendruck erkannt wird, wird ein Interrupt
ausgelöst, den das Programm verarbeiten kann.

Beispiele für ein 4x3- und ein 4x4-Tastenfeld sind die Modelle Altronics S5381 und S5383 (siehe
www.altronics.com).

Um die Tastaturfunktion zu aktivieren, benutzt man den Befehl:

KEYPAD var, int, r1, r2, r3, r4, c1, c2, c3, c4

aufgerufen, wenn ein neuer Tastendruck erkannt wird. „r1”, „r2”, „r3” und „r4” sind die Pin-Nummern für die
vier Reihenverbindungen zum Tastenfeld (siehe Abbildung unten) und „c1”, „c2”, „c3” und „c4” sind die
Spaltenverbindungen. „c4“ wird nur bei 4x4-Tastaturen verwendet und sollte weggelassen werden, wenn du
eine 4x3-Tastatur benutzt.

Du kannst alle I/O-Pins auf dem Raspberry Pi Pico verwenden und musst sie nicht vorher einrichten, das macht
der Befehl KEYPAD automatisch für dich.

PicoMite Benutzerhandbuch Seite 69

http://www.altronics.com/
http://www.altronics.com/

Die Erkennung und Dekodierung von Tastendrücken läuft im Hintergrund ab, und das Programm läuft nach
diesem Befehl ohne Unterbrechung weiter. Wenn ein Tastendruck erkannt wird, wird der Wert der Variablen
„var“ auf die Zahl gesetzt, die die Taste repräsentiert (das ist die Zahl innerhalb der Kreise in der Abbildung
oben). Dann wird der Interrupt aufgerufen.

Zum Beispiel:
Keypad KeyCode, KP_Int,GP2,GP3,GP4,GP5,GP6,GP7,GP8 ' 4x3-Tastatur
DO
 < Programmkörper >
LOOP

SUB KP_Int ' Eine Taste wurde gedrückt
 PRINT „Tastendruck = “ KeyCode
END SUB

Schau dir auch den erweiterten Befehl KEYPAD in der Befehlsbeschreibung an, der beliebig viele Zeilen
und Spalten mit vom Benutzer festgelegten Rückgabecodes erlaubt.

WS2812-Unterstützung
Die PicoMite-Firmware hat eine eingebaute Unterstützung für den mehrfarbigen LED-Chip WS2812. Dieser
Chip braucht ein ganz bestimmtes Timing, um richtig zu funktionieren, und mit dem Befehl DEVICE WS2812
lassen sich diese Geräte ganz einfach und mit minimalem Aufwand steuern.

Dieser Befehl gibt die erforderlichen Signale aus, die zum Ansteuern einer Kette von WS2812-LED-Chips
benötigt werden, die an den angegebenen Pin angeschlossen sind, und legt die Farben jeder LED in der Kette
fest. Die Syntax des Befehls lautet:

WS2812 Typ, Pin, Anzahl%, Farben%[()]

Beachte, dass der Pin auf einen digitalen Ausgang eingestellt sein muss, bevor dieser Befehl verwendet werden
kann. Das Array colours%() sollte mindestens so viele Elemente haben wie die Anzahl der anzusteuernden
LEDs (nbr%). Jedes Element im Array sollte die Farbe im normalen RGB888-Format (0 - HFFFFFF) enthalten.
Wenn eine einzelne LED angesteuert werden soll, sollte colours% eine einfache Variable sein.

Es werden bis zu 256 WS2812-Chips in einer Kette unterstützt.

„type” ist ein einzelnes Zeichen, das den Typ des angesteuerten Chips wie folgt angibt:

O = Original WS2812

B = WS2812B

S = SK6812

W = SK6812W (RGBW)

Zum Beispiel:
DIM b%(4)=(RGB(rot), Rgb(grün), RGB(blau), RGB(gelb), rgb(cyan))
SETPIN GP5, DOUT
WS2812 O, GP5, 5, b%()

gibt die angegebenen Farben an eine Reihe von fünf WS2812-LEDs aus, die über Pin GP5 in Reihe geschaltet
sind.

Seite70 PicoMite-Benutzerhandbuch

Es kann sein, dass ein WS2812 mit dem 3,3-V-Ausgang des Raspberry Pi Pico nicht richtig funktioniert. In
diesem Fall gibt's ein paar Lösungen:

 Verwende den WS2812B, der mit einer 3,3-V-Versorgung und -Eingängen funktioniert.

 Nimm den Raspberry Pi Pico 2, der 5 V verträgt (wenn er eingeschaltet ist), sodass in diesem Fall keine
Pegelverschiebung nötig ist.

 Verwende einen einzelnen WS2812, der mit 3,3 V betrieben wird, als erste Stufe, um den Eingang der
ersten „echten” LED in der Kette zu puffern. Die Mindestversorgung für den WS2812 beträgt 4 V, aber
in vielen Fällen funktioniert er auch mit 3,3 V.

OV7670-Kameramodul

Die PicoMite-Firmware unterstützt ein OV7670-Kameramodul. Details findest du unter dem Befehl CAMERA.

PicoMite Benutzerhandbuch Seite 71

Anzeigepanels
 NICHT VERFÜGBAR BEI HDMI- ODER VGA-VERSIONEN

Die PicoMite-Firmware unterstützt viele LCD-Anzeigetafeln, die eine SPI-, I2C- oder parallele Schnittstelle
verwenden.

Diese Befehle müssen an der Eingabeaufforderung (nicht in einem Programm) eingegeben werden und führen zu
einem Neustart der PicoMite-Firmware. Das hat zur Folge, dass die USB-Konsolenschnittstelle getrennt wird und
wieder angeschlossen werden muss.

Beachte, dass die maximale Spannung an allen I/O-Pins des Raspberry Pi Pico 3,3 V beträgt. Für Displays, die
5-V-Pegel für die Signalübertragung verwenden, ist eine Pegelumsetzung erforderlich. Der Raspberry Pi Pico 2
verträgt 5 V (bei eingeschaltetem Gerät), sodass in diesem Fall keine Pegelumsetzung erforderlich ist.

System-SPI-Bus

Der System-SPI-Bus des Raspberry Pi Pico 2 () ist ein dedizierter SPI-Kanal, der von vielen LCD-
Bildschirmen, allen Touch-Controllern und auch für die Kommunikation mit einer SD-Karte genutzt wird.
Wenn eines dieser Geräte angeschlossen ist, musst du zuerst die für den System-SPI-Bus verwendeten I/O-Pins
definieren.

Dies geschieht mit dem folgenden Befehl:
OPTION SYSTEM SPI CLK-Pin, MOSI-Pin, MISO-Pin

Dieser Befehl muss an der Eingabeaufforderung eingegeben werden und führt dazu, dass die Firmware neu
gestartet und die USB-Konsolenschnittstelle getrennt wird, die dann wieder angeschlossen werden muss. Diese
Option wird beim Start erneut angewendet, und die Pins werden reserviert und stehen für andere Zwecke nicht
zur Verfügung.

Ein typisches Beispiel ist:

OPTION SYSTEM SPI GP18, GP19, GP16

Beachte, dass die Geschwindigkeit beim Zeichnen auf SPI-basierten Displays und beim Zugriff auf SD-Karten
nicht von der CPU-Geschwindigkeit beeinflusst wird.

SPI-basierte Anzeigefelder

Diese Anzeigetafeln werden mit den folgenden Befehlen konfiguriert. Für alle muss zuerst der System-SPI-Bus
(siehe oben) definiert werden.

In allen Befehlen sind die Parameter:

ODER Dies ist die Ausrichtung des Displays und kann LANDSCAPE, PORTRAIT, RLANDSCAPE
oder RPORTRAIT sein. Diese können mit L, P, RL oder RP abgekürzt werden. Das Präfix R
steht für die umgekehrte oder „auf den Kopf gestellte” Ausrichtung.

DC Anzeigedaten-/Befehlssteuerungs-Pin.

RESET Pin zum Zurücksetzen des Displays (wenn auf Low gezogen).

CS Anzeige-Chipauswahl-Pin (aktiv niedrig).

BL Optionaler Pin, der die Helligkeit der Hintergrundbeleuchtung über Pulsweitenmodulation
(PWM) steuert.

INVERTIEREN Diese Option sorgt dafür, dass die Farben umgekehrt werden, um ein nicht
standardmäßiges Panel auszugleichen.

OPTION LCDPANEL ILI9341, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem Controller „ “ ILI9341. Dieser unterstützt eine Auflösung von 320 × 240 .
Displays, die diesen Controller verwenden, können transparenten Text anzeigen und funktionieren mit den
Befehlen BLIT und BLIT READ.

OPTION LCDPANEL ILI9163, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem ILI9163-Controller. Dieser unterstützt eine Auflösung von 128 * 128.

Seite72 PicoMite-Benutzerhandbuch

OPTION LCDPANEL ILI9481, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem ILI9481-Controller. Unterstützt die Auflösungen 480 * 320 und 480 * 320
().

OPTION LCDPANEL ILI9481IPS, OR, DC, RESET,CS [,BL][,INVERT]

Initialisiert ein IPS-Display mit dem ILI9481-Controller. Unterstützt eine Auflösung von 480 * 320.

OPTION LCDPANEL ILI9488, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem ILI9488-Controller (). Unterstützt eine Auflösung von 480 × 320 .
Beachte, dass dieser Controller ein Problem mit dem LCD_SDO-Pin (MISO) hat, der den Touch-Controller stört.
Damit dieses Display funktioniert, darf der LCD_SDO-Pin nicht direkt mit dem System-SPI-MISO verbunden
sein.

OPTION LCDPANEL ILI9488P, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem ILI9488-Controller. Dieser unterstützt eine Auflösung von 320 * 320.
Beachte, dass dieser Controller ein Problem mit dem LCD_SDO (MISO)-Pin hat, der den Touch-Controller stört.
Damit dieses Display funktioniert, darf der LCD_SDO-Pin nicht direkt mit dem System-SPI-MISO verbunden
sein. Diese Konfiguration unterstützt den PicoCalc mit dem Display im Hochformat.

OPTION LCDPANEL ILI9488W, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem ILI9488-Controller. Dies unterstützt das 3,5-Zoll-Display von Waveshare,
wie es auf deren Pico-Eval-Board verwendet wird, sowie den normalen 3,5-Zoll-Display-Adapter.

OPTION LCDPANEL N5110, OR, DC, RESET, CS [,contrast] [,INVERT]

Initialisiert ein LCD-Display mit dem Nokia 5110-Controller. Unterstützt eine Auflösung von 84 * 48. Ein
zusätzlicher Parameter „contrast” kann angegeben werden, um den Kontrast „ ” des Displays zu steuern.
Probieren Sie Kontrastwerte zwischen &HA8 und &HD0 aus, um das Display anzupassen. Der Standardwert bei
Auslassung ist &HB1.

OPTION LCDPANEL SSD1306SPI, OR, DC, RESET, CS [,offset] [,INVERT]

Initialisiert ein OLED-Display mit dem SSD1306-Controller und einer SPI-Schnittstelle. Unterstützt eine
Auflösung von 128 * 64. Ein zusätzlicher Parameter „offset” kann angegeben werden, um die Position des
Displays zu steuern. 0,96-Zoll-Displays brauchen normalerweise den Wert 0. 1,3-Zoll-Displays brauchen
normalerweise den Wert 2. Der Standardwert bei Auslassung ist 0.

OPTION LCDPANEL SSD1331, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein Farb-OLED-Display mit dem SSD1331-Controller. Unterstützt eine Auflösung von 96 * 64.

OPTION LCDPANEL ST7735, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein TFT-Display mit dem ST7735-Controller. Unterstützt eine Auflösung von 160 * 128.

OPTION LCDPANEL ST7735S, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein IPS-Display mit dem ST7735S-Controller. Unterstützt eine Auflösung von 160 × 80.

OPTION LCDPANEL ST7735S_W, OR, DC, RESET, CS [,BL][,INVERT]

Initialisiert ein Waveshare 128x128 ST7735S-Display. Unterstützt eine Auflösung von 128 * 128.

OPTION LCDPANEL ST7789, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein IPS-Display mit dem 7789-Controller. Unterstützt eine Auflösung von 240 * 240.
HINWEIS: Display-Boards ohne CS-Pin werden derzeit in der PicoMite-Firmware nicht unterstützt, es sei denn,
sie wurden modifiziert.

OPTION LCDPANEL ST7789_135, OR, DC, RESET,CS [,BL][,INVERT]

PicoMite Benutzerhandbuch Seite 73

Initialisiert ein IPS-Display mit dem 7789-Controller. Das unterstützt eine Auflösung von 240 * 135.
HINWEIS: Display-Karten ohne CS-Pin werden derzeit in der PicoMite-Firmware nicht unterstützt, es sei denn,
sie wurden modifiziert.

OPTION LCDPANEL ST7789_320, OR, DC, RESET,CS [,BL][,INVERT]

Initialisiert ein IPS-Display mit dem 7789-Controller. Dieser Typ unterstützt die Auflösung 320 * 240 von
Waveshare (https://www.waveshare.com/wiki/Pico-ResTouch-LCD-2.8).
Diese sind in der Lage, transparenten Text anzuzeigen und funktionieren mit den Befehlen BLIT und BLIT
READ.
HINWEIS: Display-Karten ohne CS-Pin werden derzeit in der PicoMite-Firmware nicht unterstützt, es sei denn,
sie wurden modifiziert.

OPTION LCDPANEL ST7796S, OR, DC, RESET,CS [,BL][,INVERT]

Initialisiert ein IPS-Display mit dem ST7796S-Controller. Dieser unterstützt eine Auflösung von 480 * 320.
HINWEIS: Damit transparenter Text und Blit richtig funktionieren, sollte die Diode D1 auf der Rückseite des
Displays überbrückt werden, und es wird empfohlen, J1 ebenfalls zu überbrücken, um mit 3,3 V zu arbeiten.

OPTION LCDPANEL ST7796SP, OR, DC, RESET,CS [,BL][,INVERT]

Initialisiert ein TFT-Display mit dem ST7796S-Controller. Dieser unterstützt eine Auflösung von 320 × 320.
Diese Konfiguration unterstützt den PicoCalc mit dem Display im Hochformat.

OPTION LCDPANEL GC9A01, OR, DC, RESET, CS [,BL] [,INVERT]

Initialisiert ein IPS-Display mit dem GC9A01-Controller. Unterstützt eine Auflösung von 240 × 240.

OPTION LCDPANEL ST7920, OR, DC, RESET

Initialisiert ein LCD-Display mit dem ST7920-Controller. Unterstützt eine Auflösung von 128 × 64. Beachte, dass
dieses Display keine Chipauswahl unterstützt, sodass der SPI-Bus bei Verwendung dieses Displays nicht
gemeinsam genutzt werden kann.

I2C-basierte LCD-Panels
Alle I2C-basierten Display-Controller nutzen die System-I2C-Pins gemäß der Pinbelegung für das jeweilige
Gerät. Andere I2C-Geräte können den Bus gemeinsam nutzen, sofern ihre Adressen eindeutig sind.

Um den System-I2C-Bus einzurichten, benutze den Befehl:
OPTION SYSTEM I2C sdapin, sclpin

Wenn ein I2C-Display konfiguriert ist, musst du den I2C-Port nicht für ein zusätzliches Gerät „öffnen” (I2C
OPEN), I2C CLOSE ist gesperrt und alle I2C-Geräte müssen für den 100-kHz-Betrieb geeignet sein. Die
Geschwindigkeit des I2C-Busses wird durch Änderungen der CPU-Taktrate nicht beeinflusst.

Diese Panels werden mit den folgenden Befehlen konfiguriert. In allen Befehlen ist der Parameter OR die
Ausrichtung des Displays und kann LANDSCAPE, PORTRAIT, RLANDSCAPE oder RPORTRAIT sein.
Diese können mit L, P, RL oder RP abgekürzt werden. Das Präfix R zeigt die umgekehrte oder „auf dem Kopf
stehende” Ausrichtung an.

OPTION LCDPANEL SSD1306I2C, OR [,offset]

Initialisiert ein OLED-Display mit dem SSD1306-Controller () mit einer I2C-Schnittstelle. Dieser unterstützt
eine Auflösung von 128 * 64. Ein zusätzlicher Parameter „offset” kann angegeben werden, um die Position des
Displays zu steuern. 0,96-Zoll-Displays benötigen in der Regel den Wert 0. 1,3-Zoll-Displays benötigen in der
Regel den Wert 2. Der Standardwert bei Auslassung ist 0.

Bitte beachten Sie, dass viele günstige I²C-Versionen von SSD1306-Displays aufgrund eines Verdrahtungsfehlers
I²C nicht richtig implementieren. Dies scheint insbesondere bei 1,3-Zoll-Varianten der Fall zu sein.

Der SSD1306I2C-Treiber funktioniert auch mit SSD1315- und SH1106-Controllern.

OPTION LCDPANEL SSD1306I2C32, OR

Initialisiert ein OLED-Display mit dem SSD1306-Controller mit einer I2C-Schnittstelle. Das unterstützt eine
Auflösung von 128 * 32.

Seite74 PicoMite-Benutzerhandbuch

https://www.waveshare.com/wiki/Pico-ResTouch-LCD-2.8

8-Bit-Parallel-LCD- -Panels
Neben den SPI- und I2C-basierten Controllern
unterstützt die PicoMite-Firmware auch LCD-
Displays mit dem SSD1963-Controller (wie
abgebildet) und dem ILI9341-Controller.

Diese nutzen eine parallele Schnittstelle, sind in
Größen von 2,8" bis 9" erhältlich und haben bessere
Spezifikationen als die kleineren Displays. Alle diese
Displays haben einen SD-Kartensteckplatz, der von
MMBasic voll unterstützt wird. Auf eBay findest du
passende Displays, indem du nach dem Namen des
Controllers suchst (z. B. SSD1963).

Da sie eine parallele Schnittstelle nutzen, können
Daten viel schneller übertragen werden als über eine
SPI-Schnittstelle, was zu einer sehr schnellen
Bildschirmaktualisierung führt.

Insbesondere die SSD1963-Displays sind auch viel größer, haben mehr Pixel und
sind heller. MMBasic kann einige von ihnen mit 24-Bit-True-Color für eine
Vollfarbwiedergabe (16 Millionen Farben) ansteuern.

Die Eigenschaften dieser Displays sind:

 Ein 2,8-, 3,2-, 4,3-, 5-, 7-, 8- oder 9-Zoll-Display
 Auflösung von 320 x 240, 480 x 272 Pixel (4,3-Zoll-Version) oder 800 x

480 Pixel (5-, 7-, 8- oder 9-Zoll-Versionen).
 Ein SSD1963-Display-Controller oder ILI9341-Display-Controller mit

einer parallelen Schnittstelle (8080-Format)
 Ein Touch-Controller (SPI-Schnittstelle).
 Ein SD-Kartensteckplatz in voller Größe.

Es gibt eine Reihe verschiedener Designs, die den SSD1963-Controller
verwenden, aber zum Glück haben sich die meisten Anbieter auf einen einzigen
Stecker geeinigt, wie rechts abgebildet.

Es wird dringend empfohlen, ein Display mit einem passenden Stecker zu kaufen
– das gibt dir die Gewissheit, dass der Hersteller den Standard befolgt hat, für den
die PicoMite-Firmware entwickelt wurde.

Anschluss eines 8-Bit-Parallel-LCD-Panels
Der Controller nutzt eine parallele Schnittstelle, während der Touch-Controller und die SD-Karte eine SPI-
Schnittstelle verwenden. Die Touch- und SD-Kartenfunktionen sind optional, aber wenn sie genutzt werden,
verwenden sie den zweiten SPI-Port (SPI2).

Die folgende Tabelle listet die erforderlichen Verbindungen zwischen der Display-Platine und dem Raspberry Pi
Pico auf, um die 8-Bit-Parallelschnittstelle und das LCD-Display zu unterstützen. Die Touch-Controller- und SD-
Karten-Schnittstellen sind unten aufgeführt.

8-Bit-
Parallelanzeig

e
Beschreibung

Raspberry Pi Pico

DB0 Paralleler Datenbus Bit 0 Pin 1/GP0

DB1 Paralleler Datenbus Bit 1 Pin 2/GP1

DB2 Paralleler Datenbus Bit 2 Pin 4/GP2

DB3 Paralleler Datenbus Bit 3 Pin 5/GP3

DB4 Paralleler Datenbus Bit 4 Pin 6/GP4

DB5 Paralleler Datenbus Bit 5 Pin 7/GP5

DB6 Paralleler Datenbus Bit 6 Pin 9/GP6

PicoMite Benutzerhandbuch Seite 75

DB7 Paralleler Datenbus Bit 7 Pin 10/GP7

CS Chipauswahl (aktiv niedrig)
Masse (d. h. immer

ausgewählt)

WR Schreiben (aktiv niedrig) Pin 19/GP14

RD Lesen (aktiv niedrig) Pin 20/GP15

DC Befehl/Daten Pin 17/GP13

RESET SSD1963 zurücksetzen Pin 21/GP16

LED_A
Hintergrundbeleuchtungssteuerung für ein nicht
modifiziertes Display-Panel

Konfigurierbar, siehe OPTION
LCDPANEL

5
5-V-Stromversorgung für die Hintergrundbeleuchtung bei einigen Displays (die meisten
Displays nutzen dafür die 3,3-V-Versorgung).

3,3 Stromversorgung.

GND Masse

Die Pins DC, WR, RD und RESET können mit dem optionalen Parameter DCpin als 4er-Block anderen Pins
zugewiesen werden.
Beim RP2350B kann der optionale Parameter DB0pin verwendet werden, um den Start-Pin für die 8 oder 16
aufeinanderfolgenden Daten-Pins festzulegen, die vom Display verwendet werden.

Die folgende Tabelle listet die Anschlüsse auf, die zur Unterstützung der Touch-Controller-Schnittstelle
erforderlich sind:

8-Bit-
Parallelanzeig

e
Beschreibung

Raspberry Pi Pico

T_CS Touch-Chip-Auswahl Empfohlener Pin 24/GP18

T_IRQ Touch-Interrupt Empfohlener Pin 25/GP19

T_DIN Touch-Daten-Eingang (MOSI) Empfohlener Pin 15/GP11

T_CLK Touch-SPI-Takt Empfohlener Pin 14/GP10

T_DO Touch-Datenausgang (MISO) Empfohlener Pin 16/GP12

Die folgende Tabelle zeigt die Anschlüsse, die du für den SD-Kartensteckverbinder brauchst:

8-Bit-
Parallelanzeig

e
Beschreibung

Raspberry Pi Pico

SD_CS SD-Karten-Chipauswahl Empfohlener Pin 29/GP22

SD_DIN SD-Karte Daten-Eingang (MOSI) Empfohlener Pin 15/GP11

SD_CLK SD-Karte SPI-Takt Empfohlener Pin 14/GP10

SD_DO SD-Karte Datenausgang (MISO) Empfohlener Pin 16/GP12

Wenn ein Anschluss als „empfohlen” aufgeführt ist, ist das nur ein Vorschlag und je nach Hardware-
Konfiguration können auch andere Pins verwendet werden. Trotzdem sollte der spezifische Pin im
entsprechenden OPTION-Befehl angegeben werden (siehe unten).

Seite76 PicoMite-Benutzerhandbuch

Im Allgemeinen haben 7-Zoll- und größere Displays einen separaten Pin am Stecker (mit 5V gekennzeichnet) für
die Stromversorgung der Hintergrundbeleuchtung aus einer 5-V-Quelle. Wenn dieser Pin nicht vorhanden ist,
wird die Stromversorgung für die Hintergrundbeleuchtung über den 3,3-V-Pin erfolgen. Beachte, dass der
Stromverbrauch der Hintergrundbeleuchtung beträchtlich sein kann. Beispielsweise verbraucht ein 7-Zoll-Display
in der Regel 330 mA aus dem 5-V-Pin.

Wenn der 3,3-V-Ausgang des Pico zur Stromversorgung eines Panels und seiner Hintergrundbeleuchtung
verwendet wird, kann der Strombedarf leicht höher sein, als der Pico liefern kann. Anzeichen für eine
unzureichende Stromversorgung können Fehler bei der TOUCH-Kalibrierung oder beim SD-Zugriff sein. In
diesem Fall sollte eine externe 3,3-V-Stromversorgung verwendet werden.

Der von der Hintergrundbeleuchtung verbrauchte Strom kann auch einen Spannungsabfall am Massepin des
LCD-Displays verursachen, was wiederum die vom Display-Controller wahrgenommenen Logikpegel
verschieben und zu verfälschten Farben oder Texten führen kann. Eine einfache Möglichkeit, diesen Effekt zu
diagnostizieren, besteht darin, die CPU-Geschwindigkeit auf (z. B.) 48 MHz zu reduzieren. Wenn das Problem
dadurch behoben wird, ist das ein starker Hinweis darauf, dass dies die Ursache ist. Eine Möglichkeit, das
Problem zu beheben, besteht darin, die Strom- und Erdungskabel direkt an die Leiterplatte des LCD-Bildschirms
anzulöten.

Bei Displaypanels, die den SPI-Port mit mehreren Geräten (SD-Karte, Touchscreen usw.) teilen, ist Vorsicht
geboten. In diesem Fall müssen alle Chip-Select-Signale in MMBasic konfiguriert oder durch eine permanente
Verbindung mit 3,3 V deaktiviert werden. Wenn das nicht gemacht wird, schwankt der Pin, was dazu führt, dass
der falsche Controller auf Befehle auf dem SPI-Bus reagiert.

In der PicoMite-Firmware kann jeder SPI-Kanal für die Kommunikation mit dem Touch-Controller und der SD-
Kartenschnittstelle verwendet werden, wie durch die Einstellung OPTION SYSTEM SPI definiert. Wenn diese
Einstellung aktiviert ist, steht dieser SPI-Kanal für BASIC-Programme nicht zur Verfügung (die den anderen SPI-
Kanal verwenden können).

Konfigurieren eines 8-Bit-Parallel-LCD-Panels
Um das Display zu nutzen, musst du MMBasic mit dem Befehl OPTION LCDPANEL einrichten, den du
normalerweise über die Befehlszeile eingibst. Jedes Mal, wenn die PicoMite-Firmware neu gestartet wird,
initialisiert MMBasic das Display automatisch.

Die Syntax lautet:

OPTION LCDPANEL Controller, Ausrichtung [,Backlightpin] [,DCpin] [,NORESET] [,INVERT] [,DB0pin]

Dabei kann „controller” entweder sein:

 SSD1963_4 Für ein 4,3-Zoll-Display

 SSD1963_5 Für ein 5-Zoll-Display

 SSD1963_5A Für eine andere Version des 5-Zoll-Displays, wenn SSD1963_5 nicht passt

 SSD1963_7 Für ein 7-Zoll-Display

 SSD1963_7A Für eine andere Version des 7-Zoll-Displays, falls SSD1963_7 nicht passt.

 SSD1963_8 Für 8-Zoll- oder 9-Zoll-Displays.

 ILI9341_8 Für ein 2,8-Zoll- oder 3,2-Zoll-Display

„orientation” kann LANDSCAPE, PORTRAIT, RLANDSCAPE oder RPORTRAIT sein. Diese können mit L, P,
RL oder RP abgekürzt werden. Das Präfix R zeigt die umgekehrte oder „auf den Kopf gestellte” Ausrichtung an.

„DCpin” ist optional und steht für den Daten-/Befehlspin (früher als RS-Pin bezeichnet). Wenn dieser Parameter
weggelassen wird, gilt die Pinbelegung wie oben in der Tabelle angegeben. Wenn er angegeben wird, werden die
Pins DC, WR, RD und RESET sequenziell vom DC-Pin aus zugewiesen.

Der optionale Parameter „NORESET” kann zum Speichern eines Pins verwendet werden. In diesem Fall sollte
der Reset-Pin auf High gesetzt werden.

Der optionale Parameter „INVERT“ gibt an, dass die Farbpalette invertiert werden soll (erforderlich für
bestimmte EsatRisng-Displays).

Auf dem RP2350B-Prozessor kann der optionale Parameter „DB0pin” verwendet werden, um den Start-Pin für
die 8 oder 16 aufeinanderfolgenden Daten-Pins anzugeben, die vom Display verwendet werden.

Dieser Befehl muss nur einmal ausgeführt werden. Danach initialisiert MMBasic das Display automatisch beim
Start oder beim Zurücksetzen. Unter bestimmten Umständen kann es notwendig sein, die Stromversorgung des
LCD-Panels zu unterbrechen, während die PicoMite-Firmware läuft (z. B. um Batteriestrom zu sparen). In

PicoMite Benutzerhandbuch Seite 77

diesem Fall kann der GUI-Befehl RESET LCDPANEL verwendet werden, um das Display neu zu
initialisieren.

Wenn das LCD-Panel nicht mehr gebraucht wird, kann der Befehl OPTION LCDPANEL DISABLE verwendet
werden, der die I/O-Pins für die allgemeine Verwendung zurückgibt.

Um die Konfiguration zu überprüfen, kannst du den Befehl OPTION LIST verwenden, um alle eingestellten
Optionen einschließlich der Konfiguration des LCD-Bildschirms aufzulisten.

Um das Display zu testen, kannst du den Befehl GUI TEST LCDPANEL eingeben. Du solltest eine animierte
Anzeige mit schnell übereinander gezeichneten Farbcirkeln sehen. Drücke die Leertaste auf der Tastatur der
Konsole, um den Test zu beenden.

8- und 9-Zoll-Displays
Die Controller-Konfiguration SSD1963_8 wurde nur mit den 8- und 9-Zoll-Displays von EastRising (erhältlich
unter www.buydisplay.com) getestet. Diese müssen als TFT-LCD-Panel mit 8080-Schnittstelle, 800x480-Pixel-
LCD, SSD1963-Display-Controller und XPT2046-Touch-Controller gekauft werden. Beachte, dass die
EastRising-Panels eine nicht standardmäßige Pinbelegung des Schnittstellenanschlusses verwenden, sodass du
beim Anschluss an den Raspberry Pi Pico die Datenblätter zu Rate ziehen musst. Ein passender Adapter zur
Umwandlung in den standardmäßigen 40-Pin-Anschluss kann unter https://www.rictech.nz/micromite-products
gekauft werden.

16-Bit-Parallel-LCD-Panels
SSD1963-Panels können auch für den 16-Bit-Parallelbetrieb aktiviert werden. In diesem Fall werden
standardmäßig die Pins GP0-GP15 für die Datenverbindungen und die Pins GP16 bis GP19 für die Steuersignale
DC, WR, RD und RESET verwendet.

Bei Systemen, die den RP2350B verwenden, können die verwendeten Datenpins nur mit dem optionalen
Parameter DB0pin im Konfigurationsbefehl ausgewählt werden. Um den 16-Bit-Betrieb zu aktivieren, füge „_16“
an den Controller an. Beispiel: SSD1963_4_16. Die Firmware unterstützt auch ILI9341-, ILI9486-, NT35510-
und OTM8009A-Panels im 16-Bit-Modus mit den Controllertypen ILI9341_16, ILI9486_16 und IPS_4_16
(unterstützt sowohl NT35510 als auch OTM8009A).

Gültige 16-Bit-„Controller” können sein:

 SSD1963_4_16 Für ein 4,3-Zoll-Display

 SSD1963_5_16 Für ein 5-Zoll-Display

 SSD1963_5A_16 Für eine andere Version des 5-Zoll-Displays, wenn SSD1963_5 nicht passt

 SSD1963_7_16 Für ein 7-Zoll-Display

 SSD1963_7A_16 Für eine andere Version des 7-Zoll-Displays, falls SSD1963_7 nicht passt.

 SSD1963_8_16 Für 8-Zoll- oder 9-Zoll-Displays.

 ILI9341_16 Für 2,8-Zoll- oder 3,2-Zoll-Displays

 ILI9486_16 Unterstützt auch NXP R61529

 IPS_4_16

RP2350 Erweiterte Display-Unterstützung
Der RP2350 hat 320 KB Speicher, den der MMBasic-Programmierer nutzen kann. Damit lassen sich
verschiedene zusätzliche Funktionen mit gepufferten Displaytreibern umsetzen.

Die PicoMite-Firmware für den RP2350 unterstützt die folgenden neuen Anzeigetreiber:

SPI

ILI9341BUFF: 320 x 240
ST7796SPBUFF: 320 x 320
ST7796SBUFF: 480 x 320
ILI9488PBUFF: 320 x 320
ILI9488BUFF: 480 x 320
ILI9488WBUFF: 480 x 320 'Waveshare Pico-Restouch-lcd-3.5
ST7789_320BUFF: 320 x 240 'Waveshare Pico-Restouch-LCD-2,8

Parallel

SSD1963_5_BUFF: 400 x 240 (8-Bit-Datenbus)
SSD 1963_7_ BUFF: 400 x 240 (8-Bit-Datenbus)

Seite78 PicoMite-Benutzerhandbuch

https://www.rictech.nz/micromite-products

SSD 1963_5_ 12BUFF: 400x240
SSD 1963_7_ 12BUFF: 400x240
SSD 1963_5_16 BUFF: 400x240
SSD 1963_7_16 BUFF: 400x240

In allen Fällen wird durch die Aktivierung eines dieser Treiber ein RGB332-Framebuffer aus dem allgemeinen
Speicher belegt, sodass im schlimmsten Fall bei einem ILI9488BUFF der allgemeine Speicher um 150 KB (von
320 KB) reduziert wird.

Um einen der SPI-Treiber zu nutzen, musst du zuerst die zu verwendenden SPI-Pins zuweisen:
OPTION LCD SPI clkpin, mosipin, misopin

Diese Pins sind für das Display reserviert und müssen von den Pins getrennt sein, die für das SYSTEM SPI
verwendet werden, das möglicherweise noch für Touch und SD-Karte benötigt wird (Hinweis: Bei den
Waveshare-Boards führt die Verwendung dieses Treibers zu Konflikten mit der Verwendung von Touch und
SD-Karte, da sie sich den SPI-Kanal teilen). Der Grund für die dedizierten Pins ist, dass die
Bildschirmaktualisierungen alle auf dem zweiten Prozessor stattfinden und dieser für maximale Leistung den
SPI-Kanal nicht teilen kann.

Das Format für den Befehl zum Aktivieren eines SPI-gepufferten Treibers ist das gleiche wie bei jedem SPI-
Treiber
OPTION LCDPANEL controller, orientation, DCpin, RESETpin, CSpin [,BLpin] [,INVERT]

Die SSD1963-Treiber verwenden 8, 12 oder 16 Datenpins, wie im Treibernamen angegeben. In allen Fällen
beansprucht die Aktivierung eines dieser Treiber einen 400x240 RGB332-Framebuffer aus dem Heap-Speicher.
Wenn du diese Treiber benutzt, kannst du mit dem Befehl MODE 800/400 zwischen dem gepufferten Treiber
und einem herkömmlichen Treiber wechseln, der ohne Neustart zwischen den Modi 800x480 und 400x240
umschaltet. Mit dem Befehl OPTION LCD320 ON/OFF kannst du ein 320x240-Bild auf dem 400x240-
Display zentrieren.

Das Format für den Befehl zum Aktivieren eines SDD1963-Puffertreibers ist das gleiche wie bei jedem
SSD1963-Treiber
OPTION LCDPANEL Controller, Ausrichtung [,Backlightpin] [,DCpin]
[,NORESET] [,INVERT] [,DB0pin]

Der Vorteil der gepufferten Treiber besteht darin, dass die Grafikbefehle in MMBasic einfach in einen
Speicherpuffer geschrieben werden und die Aktualisierung der physischen Anzeige dann im Hintergrund auf
dem zweiten Prozessor stattfindet. Dadurch kann das Basic-Programm die Verarbeitung fortsetzen, ohne auf
die Anzeige warten zu müssen. Natürlich ändert die Verwendung eines gepufferten Treibers nichts
Wesentliches am Gesamtdurchsatz zum physischen Display. Kontinuierliche Schreibvorgänge müssen also wie
bei einem Standardtreiber auf das Display warten. Der große Vorteil kommt zum Tragen, wenn ein Programm
eine rechenintensive Schleife hat, bei der Bildschirmschreibvorgänge die Verarbeitung verzögern. In diesem
Fall wird der Overhead der Verarbeitungsschleife drastisch reduziert, solange die
Gesamtbildschirmaktualisierungsrate überschaubar ist.

VGA222-Treiber
Der PICOMITE RP2350 und der PICOMITEUSB RP2350 können auch einen verbesserten VGA-Treiber
nutzen, der im RGB222-Modus läuft und 64 Farben anzeigt. Das wird mit dem Befehl konfiguriert:
OPTION LCDPANEL driver, hsyncpin, bluelpin

Gültige Treiber sind: VGA222_640, VGA222_320, VGA_720, VGA_360 mit den VGA222-Auflösungen
640x480, 320x240, 720x400 und 360x200.

Der Befehl OPTION prüft, ob hysyncpin und hysyncpin+1 (vsync) bluelpin - bluelpin+5 (blue_l, blue_h,
green_l, green_h, red_l, red_h) verfügbar sind. Wenn das alles frei ist, wird die VGA222-Ausgabe auf den
angegebenen Pins eingerichtet.

Um die Datenpins mit dem VGA-Anschluss zu verbinden, nimmst du 390- und 820-Ohm-Widerstände von den
H- und l-Ausgängen gemäß dem grünen Kanal im Handbuch (Seite 30). RGB222 bietet eine viel schönere
Farbwiedergabe als RGB121, das in der Standard-VGA-Version verfügbar ist. Beachte, dass es keine Modi
gibt. Die Modi 640x480, 320x240, 720x400 und 360x200 sind unterschiedliche Treiber und brauchen
unterschiedlich viel Speicher (viel mehr bei 640x480 und 720x400). Um den VGA-Ausgang zu erzeugen, nutzt
die Firmware PIO0 und PIO1, sodass PIO2 verfügbar bleibt verfügbar bleibt (es sei denn, du verwendest auch
den I2S-Audiotreiber).

PicoMite Benutzerhandbuch Seite 79

Hintergrundbeleuchtungssteuerung
Für die Displays ILI9163, ILI9341, ST7735, ST7735S, SSD1331, ST7789, ILI9481, ILI9488, ILI9488W,
ST7789_135 ILI9341_8 und ST7789_320 kann am Ende der Konfigurationsparameter ein optionaler Parameter
„backlight” hinzugefügt werden, der einen Pin zur Steuerung der Helligkeit der Hintergrundbeleuchtung
(LED_A) angibt. Dadurch wird ein PWM-Ausgang an diesem Pin mit einer Frequenz von 50 kHz und einem
anfänglichen Tastverhältnis von 99 % eingerichtet.

Du kannst dann den Befehl BACKLIGHT verwenden, um die Helligkeit zwischen 0 und 100 % zu ändern. Der
PWM-Kanal ist für die normale PWM-Verwendung gesperrt und darf nicht mit dem PWM-Kanal in Konflikt
stehen, der möglicherweise für Audio eingerichtet ist.

Zum Beispiel:

 OPTION LCDPANEL ILI9341, OR, DC, RESET, CS, GP11
Die Hintergrundbeleuchtung kann dann mit diesem Befehl auf 40 % eingestellt werden:

 BACKLIGHT 40

Die meisten SSD1963-basierten LCD-Panels haben
drei Paare von Lötpads auf der Leiterplatte, die unter
der Überschrift „Backlight Control”
(Hintergrundbeleuchtungssteuerung)
zusammengefasst sind, wie rechts dargestellt.

Normalerweise ist das mit „LED-A” markierte Paar
mit einem Null-Ohm-Widerstand kurzgeschlossen,
wodurch die Helligkeit der Hintergrundbeleuchtung
mit einem PWM-Signal (Pulsweitenmodulation) am
LED-A-Pin des Hauptanschlusses des Displaypanels
gesteuert werden kann.

Es ist aber besser, den SSD1963-Controller zu
nutzen, um dieses Signal zu erzeugen, weil dadurch ein I/O-Pin frei wird und eine feinere Steuerung möglich ist.

Um die SSD1963-Steuerung zu nutzen, sollte der Null-Ohm-Widerstand vom mit „LED-A” gekennzeichneten
Paar entfernt und zum Kurzschließen des nahe gelegenen Paares von Lötpads mit der Kennzeichnung „1963-
PWM” verwendet werden. Die Helligkeit kann dann mit dem Befehl BACKLIGHT über den SSD1963-
Controller eingestellt werden (dies geschieht automatisch, es muss nichts konfiguriert werden).

Touch-Unterstützung
Viele LCD-Panels werden mit einem resistiven Touchscreen und einem zugehörigen Controller-Chip geliefert.
MMBasic unterstützt diese Schnittstelle vollständig, sodass viele der in einem Projekt verwendeten physischen
Knöpfe und Schalter als durch Berührung aktivierte Bildschirmsteuerungen implementiert werden können.
Als Alternative zum resistiven Touchscreen unterstützt MMBasic auch kapazitive Touchscreens auf Basis des
FT6336-Controllers.

In allen Fällen sollte zuerst das LCD-Display selbst konfiguriert und getestet werden, bevor die Touch-
Funktion konfiguriert werden kann. Der Touch-Controller nutzt das SPI-Protokoll für die Kommunikation. Bei
LCD-Panels, die das SPI-Protokoll nutzen, wurde dies normalerweise zuvor mit dem Befehl OPTION
SYSTEM SPI gemacht.

Bei Displaypanels, die I2C oder eine parallele Schnittstelle nutzen, muss der Befehl OPTION SYSTEM SPI
separat verwendet werden, um den System-SPI-Bus für die Nutzung durch den Touch-Controller zu definieren.
Dieser Befehl wurde am Anfang dieses Kapitels besprochen und im Kapitel „Optionen” dieses Handbuchs
ausführlich beschrieben.

Wenn du zum Beispiel die empfohlenen Pins für ein 8-Bit-Parallel-Display (wie oben beschrieben) verwendest,
würdest du Folgendes verwenden:

OPTION SYSTEM SPI GP10, GP11, GP12
Um die Touch-Funktion zu nutzen, muss MMBasic mit dem Befehl OPTION TOUCH mitgeteilt werden, dass
der Touch-Controller auf dem System-SPI-Bus verfügbar ist. Dadurch wird MMBasic mitgeteilt, welche Pins für
die Chip-Select- und Interrupt-Signale verwendet werden.

Bei einem typischen ILI9341-Display wird damit zum Beispiel Chip Select auf den GP12-Pin und Interrupt auf
GP11 gesetzt:

OPTION TOUCH GP12, GP11

Seite80 PicoMite-Benutzerhandbuch

Das musst du an der Eingabeaufforderung eingeben, damit die Firmware neu startet und die USB-
Konsolenschnittstelle trennt, die dann wieder angeschlossen werden muss.

Wenn die PicoMite-Firmware neu gestartet wird, initialisiert MMBasic automatisch den Touch-Controller. Um
die Konfiguration zu überprüfen, kannst du den Befehl OPTION LIST verwenden, um alle eingestellten Optionen
aufzulisten, einschließlich der Konfiguration des Display-Panels und des Touchscreens.

Vorsicht ist geboten, wenn der SPI-Port von mehreren Geräten (SD-Karte, Touchscreen usw.) gemeinsam genutzt
wird. In diesem Fall müssen alle Chip-Select-Signale in MMBasic konfiguriert oder alternativ deaktiviert werden.

Kalibrieren des Touchscreens
Bevor die Touch-Funktion genutzt werden kann, muss sie mit dem
Befehl CALIBRATE der GUI „ ” kalibriert werden: .

Dieser Befehl zeigt ein Ziel in der oberen linken Ecke des Bildschirms
an (wie abgebildet). Drück mit einem spitzen, aber stumpfen Gegenstand
(z. B. einem Zahnstocher) genau auf die Mitte des Ziels und halte ihn
mindestens eine Sekunde lang gedrückt. MMBasic speichert diese
Position und setzt dann die Kalibrierung fort, indem es das Ziel
nacheinander in den anderen drei Ecken des Bildschirms zur Berührung
und Kalibrierung anzeigt.

Die Kalibrierungsroutine kann eine Warnung ausgeben, dass die Kalibrierung nicht genau war. Dies ist nur eine
Warnung, und du kannst die Touch-Funktion trotzdem verwenden, wenn du möchtest, aber es wäre besser, die
Kalibrierung mit mehr Sorgfalt zu wiederholen.

Nach der Kalibrierung kannst du die Touch-Funktion mit dem GUI-Befehl TEST TOUCH testen. Dieser
Befehl macht den Bildschirm schwarz und wartet auf eine Berührung. Wenn der Bildschirm berührt wird,
erscheint ein weißer Punkt auf dem Display, der die Position der Berührung auf dem Bildschirm markiert.
Wenn die Kalibrierung erfolgreich war, sollte der Punkt genau unter der Position des Stylus auf dem
Bildschirm angezeigt werden. Um den Test zu beenden, kannst du die Leertaste auf der Tastatur der Konsole
drücken.

Touch-Funktionen
Um zu erkennen, ob und wo der Bildschirm berührt wird, kannst du die folgenden Funktionen in einem
BASIC-Programm verwenden:

 TOUCH(X)
Gibt die X-Koordinate der aktuell berührten Stelle zurück oder -1, wenn der Bildschirm nicht berührt wird.

 TOUCH(Y)
Gibt die Y-Koordinate der aktuell berührten Stelle zurück oder -1, wenn der Bildschirm nicht berührt wird.

Touch-Interrupts
Ein Interrupt kann auf die IRQ-Pin-Nummer gesetzt werden, die bei der Konfiguration der Touch-Funktion
angegeben wurde. Um eine Berührung zu erkennen, sollte der Interrupt als INTL (d. h. von hoch nach niedrig)
konfiguriert werden. Der Interrupt kann mit dem Befehl SETPIN pin, OFF abgebrochen werden.

Das folgende Programm zeigt, wie der Touch-Interrupt verwendet werden kann. Immer wenn der Bildschirm
berührt wird, werden die Koordinaten dieser Berührung auf der Konsole angezeigt. Es wird davon
ausgegangen, dass der Befehl OPTION TOUCH 7, 15 verwendet wurde, um die Touch-Funktion zunächst zu
konfigurieren:

SETPIN 15, INTL, MyInt ' geht davon aus, dass OPTION TOUCH 7, 15
verwendet wurde
DO : LOOP

SUB MyInt ' Unterprogramm, das bei einem Touch-Interrupt aufgerufen
wird
 PRINT TOUCH(X) TOUCH(Y)
END SUB

LCD-Display als Konsolenausgabe
Mit einer PS2- oder USB-Tastatur und einem LCD-Display kannst du einen komplett eigenständigen Computer
bauen, der direkt mit der MMBasic-Eingabeaufforderung startet. Das funktioniert besonders gut mit 5- und 7-
Zoll-LCD-Displays, die den SSD1963-Controller nutzen. Die können viel Text anzeigen und schnell

PicoMite Benutzerhandbuch Seite 81

aktualisieren, was ein Benutzererlebnis bietet, das mit einem PicoMite-basierten Computer mit VGA- oder
HDMI-Videoausgang vergleichbar ist.

Das LCD muss zuerst mit OPTION LCDPANEL konfiguriert werden. Um dann die Konsolenausgabe auf dem
LCD-Panel zu aktivieren, solltest du den folgenden Befehl verwenden:

OPTION LCDPANEL CONSOLE [font [, fc [, bc [, blight]]] [,NOSCROLL]

„font“ ist die Standardschriftart, „fc“ ist die Standardfarbe für den Vordergrund, „bc“ ist die Standardfarbe für
den Hintergrund und „blight“ ist die Standardhelligkeit der Hintergrundbeleuchtung (2 bis 100). Diese
Einstellungen werden im Flash-Speicher gespeichert und beim Einschalten zum Konfigurieren von MMBasic
verwendet. Sie sind alle optional und standardmäßig auf Schriftart 2, Weiß, Schwarz und 100 % eingestellt.

Bei Displays, bei denen der Framebuffer nicht gelesen werden kann, setzt die Firmware automatisch die Option
NOSCROLL. Wenn diese Option aktiviert ist und die Ausgabe den unteren Bildschirmrand erreicht, wird der
Bildschirm gelöscht und die Ausgabe oben fortgesetzt. Dies gilt auch für den integrierten Editor. Bei SPI-
Displays, die den Framebuffer lesen können (z. B. ILI9341), ist das Scrollen sehr langsam, sodass der
Parameter NOSCROLL eingestellt werden kann, um die Ausgabe- und Bearbeitungsleistung zu verbessern.

Beachte, dass das nicht nötig ist, wenn das Display im Hochformat verwendet wird, da dann H/W-Scrollen
verwendet wird.

Die Farbcodierung im Editor wird ebenfalls durch diesen Befehl aktiviert (siehe Kapitel Vollbild-Editor). Um
die Verwendung des LCD-Panels als Konsole zu deaktivieren, lautet der Befehl OPTION LCDPANEL
NOCONSOLE.

Beispiel für die Konfiguration eines SPI-LCD-Panels
Im Folgenden wird zusammengefasst, wie ein typisches LCD-Panel mit einem ILI9341-Controller
angeschlossen werden kann. Dieses Beispiel unterstützt den SD-Kartensteckplatz, das LCD-Display und die
Touch-Schnittstelle.

Typische Panels findest du auf ebay.com und ähnlichen Websites, wenn du nach dem Stichwort „ILI9341”
suchst. Achte darauf, dass die Anschlüsse auf der Rückseite des Panels denen unten entsprechen:

Das Panel sollte wie abgebildet an den Raspberry Pi Pico angeschlossen werden:

Um die oben genannten Anschlüsse anzupassen, solltest du die folgenden Konfigurationsbefehle nacheinander in
die Befehlszeile eingeben:

OPTION SYSTEM SPI GP18, GP19, GP16
OPTION LCDPANEL ILI9341, L, GP15, GP14, GP13
OPTION TOUCH GP12, GP11
OPTION SDCARD GP22

Diese Befehle werden gespeichert und beim Einschalten automatisch angewendet. Beachte, dass nach der
Eingabe jedes Befehls die Firmware neu gestartet wird und die USB-Verbindung unterbrochen wird und neu
hergestellt werden muss.

Als Nächstes sollte der Touchscreen kalibriert werden mit:

GUI CALIBRATE

Seite82 PicoMite-Benutzerhandbuch

Anschließend kannst du die verschiedenen Komponenten testen.

Mit dem folgenden Befehl werden mehrere bunte, sich überlappende Kreise auf dem LCD-Bildschirm
angezeigt, um zu überprüfen, ob das LCD richtig angeschlossen ist:

GUI TEST LCDPANEL
Mit dem folgenden Befehl kannst du die Touch-Oberfläche testen. Wenn du den LCD-Bildschirm berührst,
sollte genau an der Berührungsstelle ein Punkt auf dem Bildschirm erscheinen.

GUI TEST TOUCH
Wenn das nicht genau ist, musst du den Befehl GUI CALIBRATE vielleicht noch mal ausführen und dabei
genauer aufpassen.

Schließlich listet der folgende Befehl die Dateien auf der SD-Karte auf. Wenn er ohne Fehler ausgeführt wird,
kannst du sicher sein, dass die SD-Kartenschnittstelle in Ordnung ist.

DATEIEN
Wenn du Probleme mit der Anzeige hast, solltest du alles trennen und die Optionen mit dem Befehl OPTION
RESET zurücksetzen, damit du neu anfangen kannst. Schließe dann alles Schritt für Schritt wieder an und
konfiguriere und teste jeden neuen Schritt, während du fortfährst. Beachte dabei, dass jedes an den SPI-Bus
angeschlossene Gerät in MMBasic konfiguriert werden muss oder dass seine Chip-Auswahlleitung auf logisch
hoch gehalten werden muss. Dies ist wichtig, da die Spannung an einer nicht angeschlossenen Chip-
Auswahlleitung schwankt und möglicherweise dazu führt, dass das falsche Gerät auf Signale reagiert, die für
ein anderes Gerät bestimmt sind.

Beachte auch, dass der ILI9341-Controller sehr empfindlich gegenüber statischer Entladung ist. Wenn das
Panel nicht reagiert, könnte es leicht beschädigt sein, und es lohnt sich, es mit einem anderen Panel zu testen.

PicoMite Benutzerhandbuch Seite 83

Grafikfunktionen

Diese Befehle und Funktionen arbeiten mit angeschlossenen LCD-Panels und VGA/HDMI-Videoausgängen.
Eine Anleitung zur Verwendung dieser Funktionen ist in der Firmware-Distributionsdatei enthalten. Siehe die
Datei: Graphics in the PicoMite.pdf

Unterstützte Hardware

LCD-Panels

Die Auflösung und die Anzahl der Farben, die von einem LCD-Panel unterstützt werden, hängen vom Panel
selbst und vom Treiber ab – mehr dazu findest du im Kapitel „Anzeigepanels”.

VGA-Video

Es gibt eine Reihe von Modi, die mit dem Befehl MODE ausgewählt werden können:

OPTION AUFLÖSUNG 640x480

MODE 1 640x480 monochrom mit RGB121-Kacheln, optionaler Layer-Puffer
MODUS 2 320x240 4-Bit-Farbe, optionaler Ebenenpuffer (nur RP2350) zweiter optionaler Ebenenpuffer
MODUS 3 640 x 480 4-Bit-Farbe, optionaler Layer-Puffer (nur RP2350)

OPTIONALE AUFLÖSUNG 720 x 400

MODUS 1 720 x 400 monochrom mit RGB121-Kacheln, optionaler Ebenenpuffer
MODUS 2 360 x 200 4-Bit-Farbe, optionaler Layer-Puffer (nur RP2350) zweiter optionaler Layer-Puffer
MODUS 3 720 x 400 4-Bit-Farbe, optionaler Layer-Puffer (nur RP2350)

OPTIONALE AUFLÖSUNG 800 x 600 (nur RP2350)

MODUS 1 800 x 600 monochrom mit RGB121-Kacheln, optionaler Ebenenpuffer
MODUS 2 400 x 300 4-Bit-Farbe, zwei optionale Ebenen
MODUS 3 800 x 600 4-Bit-Farbe, optionaler Ebenenpuffer

OPTIONALE AUFLÖSUNG 848 x 480 (nur RP2350)

MODUS 1 848 x 480 monochrom mit RGB121-Kacheln, optionaler Ebenenpuffer
MODUS 2 424 x 240 4-Bit-Farbe, zwei optionale Ebenen
MODUS 3 848 x 480 4-Bit-Farbe, optionaler Ebenenpuffer

HDMI-Video (nur RP2350)

Jede HDMI-Auflösung kann in verschiedenen Modi betrieben werden, die mit dem Befehl MODE eingestellt
werden:

OPTION AUFLÖSUNG 640 x 480

MODUS 1 640 x 480 x 2 Farben mit RGB555, optionaler Layer-Puffer
MODUS 2 320x240x16 Farben und Farbabbildung auf RGB555-Palette, zwei optionale Ebenen
MODUS 3 640 x 480 x 16 Farben und Farbabbildung auf RGB555-Palette, optionaler Ebenenpuffer
MODUS 4 320 x 240 x 32768 Farben, optionaler Ebenenpuffer
MODUS 5 320 x 240 x 256 Farben und Farbabbildung auf RGB555-Palette, optionaler Ebenenpuffer

OPTIONALE AUFLÖSUNG 720 x 400

MODUS 1 720 x 400 monochrom mit RGB555-Kacheln, optionaler Ebenenpuffer
MODUS 2 360 x 200 4-Bit-Farben und Farbabbildung auf RGB555-Palette, zwei optionale Ebenen
MODUS 3 720 x 400 4-Bit-Farbe und Farbabbildung auf RGB555-Palette, optionaler Ebenenpuffer
MODUS 4 360 x 200 x 32768 Farben, optionaler Ebenenpuffer
MODUS 5 360 x 200 x 256 Farben und Farbabbildung auf RGB555-Palette, optionaler Ebenenpuffer

OPTIONALE AUFLÖSUNG 800 x 600 (nur RP2350)

MODUS 1 800 x 600 monochrom mit RGB332-Kacheln, optionaler Ebenenpuffer

Seite84 PicoMite-Benutzerhandbuch

MODUS 2 400 x 300 4-Bit-Farben und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 3 800 x 600 4-Bit-Farbe und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 5 400 x 300 x 256 Farben, optionaler Ebenenpuffer

OPTIONALE AUFLÖSUNG 848 x 480 (nur RP2350)

MODUS 1 848 x 480 monochrom mit RGB332-Kacheln, optionaler Ebenenpuffer
MODUS 2 424 x 240 4-Bit-Farbe und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 3 848 x 480 4-Bit-Farbe und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 5 424 x 240 x 256 Farben, optionaler Ebenenpuffer

OPTIONALE AUFLÖSUNG 1280 x 720

MODUS 1 1280 x 720 x 2 Farben mit RGB332, optionaler Layer-Puffer
MODUS 2 320 x 180 x 16 Farben und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 3 640 x 360 x 16 Farben und Farbabbildung auf RGB332-Palette, optionaler Layer-Puffer
MODUS 5 320 x 180 x 256 Farben, optionaler Layer-Puffer

OPTIONALE AUFLÖSUNG 1024 x 768

MODUS 1 1024 x 768 x 2 Farben mit RGB332-Kacheln, optionaler Layer-Puffer
MODUS 2 256 x 192 x 16 Farben und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 3 512 x 384 x 16 Farben und Farbabbildung auf RGB332-Palette, optionaler Ebenenpuffer
MODUS 5 256 x 192 x 256 Farben, optionaler Layer-Puffer

OPTION AUFLÖSUNG 1024 x 600

MODUS 1 1024 x 600 Mono mit Kacheln
MODUS 2 256 x 150 RGB121
MODUS 3 512x300 RGB121
MODUS 5 256x150 RGB332

OPTIONALE AUFLÖSUNG 800x480 (Anmerkung: verringert den verfügbaren Heap-Speicher)

MODUS 1 800x480 Mono mit Kacheln
MODUS 2 400x240 RGB121
MODUS 3 800x480 RGB121
MODUS 5 400 x 240 RGB332

Farben
Die Farbe wird als Echtfarben-24-Bit-Zahl angegeben, wobei die oberen acht Bits die Intensität der roten
Farbe, die mittleren acht Bits die Intensität der grünen Farbe und die unteren acht Bits die Intensität der blauen
Farbe darstellen. Am einfachsten lässt sich diese Zahl mit der Funktion RGB() erzeugen, die folgende Form
hat:

RGB(rot, grün, blau)

Die Funktion RGB() unterstützt auch eine Abkürzung, mit der du gängige Farben durch ihre Bezeichnung
angeben kannst, z. B. RGB(red) oder RGB(cyan). Die Farben, die mit der Abkürzungsform benannt werden
können, sind Weiß, Schwarz, Blau, Grün, Cyan, Rot, Magenta, Gelb, Braun, Weiß, Orange, Rosa, Gold, Lachs,
Beige, Hellgrau und Grau (oder in der US-amerikanischen Schreibweise Gray/Lightgray).

MMBasic wandelt alle Farben automatisch in das vom jeweiligen Display-Controller benötigte Format um.
Zum Beispiel sind es beim ILI9341-LCD-Controller 64K Farben im 565-Format.

Die Standardeinstellung für Befehle, die einen Farbparameter brauchen, kann mit dem Befehl COLOUR (kann
auch COLOR geschrieben werden) festgelegt werden. Das ist praktisch, wenn dein Programm ein einheitliches
Farbschema verwendet. Du kannst dann die Standardeinstellungen festlegen und die Kurzform der
Zeichenbefehle in deinem ganzen Programm verwenden.

Der Befehl COLOUR hat das Format: COLOUR Vordergrundfarbe, Hintergrundfarbe

PicoMite Benutzerhandbuch Seite 85

Schriftarten
Es gibt acht integrierte Schriftarten. Diese sind:

Schrift
Numme

r

Größe
(Breite x Höhe)

Zeichen
Set

Beschreibung

1 8 x 12
Alle 95 ASCII-Zeichen

plus 7F bis FF (hex)
Standardschriftart (Standard beim Start).

2 12 x 20 Alle 95 ASCII-Zeichen Mittlere Schriftgröße.

3 16 x 16 Alle 95 ASCII-Zeichen Große Schriftart für VGA-Versionen.

3 16 x 24
Alle 95 ASCII-Zeichen Eine große Schriftart für HDMI-Versionen und LCD-

Bildschirme.

4 10 x 16
Alle 95 ASCII-Zeichen

plus 7F bis FF (hex)
Eine Schriftart mit erweiterten Grafikzeichen. Gut
für hochauflösende Displays.

5 24 x 32 Alle 95 ASCII-Zeichen Extra große Schriftart, sehr klar.

6 32 x 50
0 bis 9 plus ein paar

Symbole

Zahlen plus Dezimalpunkt, Plus-, Minus-,
Gleichheits-, Grad- und Doppelpunktzeichen. Echt
gut lesbar.

7 6 x 8 Alle 95 ASCII-Zeichen
Eine kleine Schriftart, die bei niedrigen Auflösungen
nützlich ist.

8 4 x 6 Alle 95 ASCII-Zeichen Eine noch kleinere Schriftart.

Beachte, dass Schriftart 3 bei Verwendung mit VGA-
Videoausgabe eine Größe von 16 x 16 Pixel hat, bei HDMI- und
LCD-Bildschirmen aber eine Größe von 16 x 24.

 In allen Schriftarten (einschließlich Schriftart Nr. 6) wurde das
Backquote-Zeichen (60 hexadezimal oder 96 dezimal) durch das
Gradzeichen (º) ersetzt.

Schriftart Nr. 1 (die Standardschriftart) und Schriftart Nr. 4 haben
einen erweiterten Zeichensatz, der alle Zeichen von CHR$(32) bis
CHR$(255) oder 20 bis FF (hex) abdeckt, wie rechts dargestellt.

Eingebettete Schriftarten
Bei Bedarf können zusätzliche Schriftarten in ein BASIC-Programm eingebettet werden. Diese Schriftarten
funktionieren genauso wie die integrierte Schriftart (d. h. sie werden mit dem Befehl FONT ausgewählt oder im
Befehl TEXT angegeben).

Das Format einer eingebetteten Schriftart ist:
DefineFont #Nbr
 hex [[hex[…]
 hex [[hex[…]
END DefineFont

Es muss mit dem Schlüsselwort „DefineFont” beginnen, gefolgt von der Schriftartnummer (der optional ein #-
Zeichen vorangestellt werden kann). Es kann jede Schriftartnummer im Bereich von 2 bis 5 und 8 bis 16
angegeben werden. Wenn sie mit einer integrierten Schriftart übereinstimmt, ersetzt sie diese Schriftart.

Der Hauptteil der Schriftart besteht aus einer Folge von 8-stelligen Hexadezimalwörtern, wobei jedes Wort
durch ein oder mehrere Leerzeichen oder eine neue Zeile getrennt ist. Die Schriftartdefinition wird durch das
Schlüsselwort „End DefineFont” beendet. Diese können an beliebiger Stelle in einem Programm platziert
werden, und MMBasic überspringt sie. Dieses Format entspricht dem von Micromite verwendeten Format.

Seite86 PicoMite-Benutzerhandbuch

Weitere Schriftarten und Infos findest du im Ordner „Embedded Fonts” im PicoMite-Firmware-Download.
Diese Schriftarten decken eine breite Palette von Zeichensätzen ab, darunter eine Symbolschriftart (Dingbats),
die sich gut zum Erstellen von Bildschirmsymbolen usw. eignet.

Bildschirmkoordinaten
Alle Koordinaten und Messungen auf dem Bildschirm werden in Pixeln angegeben, wobei die X-Koordinate
die horizontale Position und die Y-Koordinate die vertikale Position angibt. Die obere linke Ecke des
Bildschirms hat die Koordinaten X = 0 und Y = 0, und die Werte steigen, wenn man sich nach unten und nach
rechts auf dem Bildschirm bewegt.

Es gibt vier schreibgeschützte Variablen, die nützliche Informationen über das aktuell angeschlossene Display
liefern:

 MM. HRES
Gibt die Breite des Displays (die X-Achse) in Pixeln zurück.

 MM.VRES
Gibt die Höhe des Displays (die Y-Achse) in Pixeln zurück.

 MM.INFO(FONTHEIGHT)
Gibt die Höhe der aktuellen Standardschriftart (in Pixeln) zurück. Alle Zeichen einer Schriftart haben die
gleiche Höhe.

 MM.INFO(FONTWIDTH)
Gibt die Breite eines Zeichens in der aktuellen Schriftart zurück (in Pixeln). Alle Zeichen haben die
gleiche Breite.

Zeichenbefehle
Es gibt zehn grundlegende Zeichenbefehle, die du in MMBasic-Programmen zum Zeichnen von Grafiken
verwenden kannst. Die meisten davon haben optionale Parameter. Du kannst diese am Ende eines Befehls
komplett weglassen oder zwei Kommas hintereinander verwenden, um einen fehlenden Parameter anzuzeigen.
Der fünfte Parameter des Befehls LINE ist zum Beispiel optional, sodass du dieses Format verwenden kannst:

 LINE 0, 0, 100, 100, , rgb(red)

Optionale Parameter sind unten kursiv dargestellt, zum Beispiel: font.

In den folgenden Befehlen ist C die Zeichenfarbe und standardmäßig die aktuelle Vordergrundfarbe. FILL ist
die Füllfarbe, die standardmäßig auf -1 gesetzt ist, was bedeutet, dass keine Füllung verwendet werden soll.

Die grundlegenden Zeichenbefehle sind:
 CLS C

Löscht den Bildschirm in der Farbe C. Wenn C nicht angegeben ist, wird die aktuelle Standard-
Hintergrundfarbe verwendet.

 PIXEL X, Y, C
Leuchtet ein Pixel in der Farb t. Wenn C nicht angegeben ist, wird die aktuelle Standard-Vordergrundfarbe
benutzt.

 LINE X1, Y1, X2, Y2, LW, C
Zeichnet eine Linie, die bei X1 und Y1 anfängt und bei X2 und Y2 endet.
LW ist die Breite der Linie und gilt nur für horizontale oder vertikale Linien. Wenn nichts angegeben ist
oder die Linie diagonal verläuft, ist der Standardwert 1. Es gibt eine erweiterte Version für diagonale Linien
(siehe LINE AAA).

 BOX X, Y, W, H, LW, C, FILL
Zeichnet ein Rechteck, das bei X und Y anfängt und W Pixel breit und H Pixel hoch ist.
LW ist die Breite der Seiten des Kastens und kann Null sein. Der Standardwert ist 1.

 RBOX X, Y, W, H, R, C, FILL
Zeichnet ein Rechteck mit abgerundeten Ecken, das bei X und Y beginnt und W Pixel breit und H Pixel
hoch ist.
R ist der Radius der Ecken des Kastens. Der Standardwert ist 10.

 CIRCLE X, Y, R, LW, A, C, FILL
Zeichnet einen Kreis mit X und Y als Mittelpunkt und einem Radius R. LW ist die Breite der Linie, die für
den Umfang verwendet wird, und kann Null sein (Standardwert ist 1). A ist das Seitenverhältnis, das eine

PicoMite Benutzerhandbuch Seite 87

Gleitkommazahl ist und standardmäßig 1 ist. Bei einem Seitenverhältnis von 0,5 wird beispielsweise ein
Oval gezeichnet, dessen Breite halb so groß ist wie seine Höhe.

 TEXT X, Y, STRING, ALIGNMENT, FONT, SCALE, C, BC
Zeigt eine Zeichenfolge an, die bei X und Y anfängt. ALIGNMENT ist 0, 1 oder 2 Zeichen (ein
Zeichenfolgenausdruck oder eine Variable ist auch erlaubt), wobei der erste Buchstabe die horizontale
Ausrichtung um X ist und L, C oder R für links-, zentriert- oder rechtsbündigen Text sein kann und der
zweite Buchstabe die vertikale Ausrichtung um Y ist und T, M oder B für oben-, mittig- oder
untenbündigen Text sein kann. Die Standardausrichtung ist links/oben. Ein zusätzlicher Code-Buchstabe
kann verwendet werden, um den Text zu drehen (Details siehe unten). FONT und SCALE sind optional und
standardmäßig auf die durch den Befehl FONT festgelegten Werte eingestellt. C ist die Zeichenfarbe und
BC ist die Hintergrundfarbe. Sie sind optional und standardmäßig auf die durch den Befehl COLOUR
festgelegten Werte eingestellt.

 GUI BITMAP X, Y, BITS, WIDTH, HEIGHT, SCALE, C, BC
Zeigt die Bits in einer Bitmap an, beginnend bei X und Y. HEIGHT und WIDTH sind die Abmessungen
der Bitmap, wie sie auf dem LCD-Bildschirm angezeigt werden, und sind standardmäßig auf 8x8
eingestellt. SCALE, C und BC sind die gleichen wie beim Befehl TEXT. Die Bitmap kann eine Ganzzahl
oder eine Zeichenfolgenvariable oder -konstante sein und wird mit dem ersten Byte als ersten Bits der
obersten Zeile (zuerst Bit 7, dann Bit 6 usw.) gezeichnet, gefolgt vom nächsten Byte usw. Wenn die oberste
Zeile gefüllt ist, beginnt die nächste Zeile der angezeigten Bitmap mit dem nächsten Bit in der Ganzzahl
oder Zeichenfolge.

 POLYGON n, xarray%(), yarray%() [, bordercolour] [, fillcolour]
Zeichnet ein gefülltes oder umrandetes Polygon mit n xy-Koordinatenpaaren in xarray%() und yarray%().
Wenn „fillcolour” weggelassen wird, wird nur die Polygonumrandung gezeichnet. Wenn „bordercolour”
weggelassen wird, wird standardmäßig die aktuelle Vordergrundfarbe verwendet.

 ARC x, y, r1, [r2], a1, a2 [, c]
Zeichnet einen Kreisbogen mit einer bestimmten Farbe und Breite zwischen zwei Radien (in Grad
definiert). Die Parameter für den Befehl ARC sind die x- und y-Koordinaten des Mittelpunkts des Bogens,
der innere und äußere Radius, der Start- und Endwinkel des Bogens und die Farbe des Bogens. Der
Nullpunkt liegt bei 12 Uhr.

Gedrehter Text
Wie oben beschrieben, kann die Ausrichtung des Textes im Befehl TEXT durch die Verwendung von einem
oder zwei Zeichen in einem Zeichenfolgenausdruck für den dritten Parameter des Befehls festgelegt werden. In
dieser Zeichenfolge kannst du auch ein drittes Zeichen angeben, um die Drehung des Textes anzugeben.

Dieses Zeichen kann eines der folgenden sein:

 N für normale Ausrichtung

 V für vertikalen Text, wobei jedes Zeichen unter dem vorherigen von oben nach unten verläuft.

 I Der Text wird umgekehrt (d. h. auf dem Kopf stehend) angezeigt.

 U Der Text wird um 90º gegen den Uhrzeigersinn gedreht.

 D Der Text wird um 90º im Uhrzeigersinn gedreht.

Als Beispiel wird der folgende Text „LCD-Anzeige” vertikal am linken Rand des Anzeigefelds und vertikal
zentriert angezeigt:

TEXT 0, 250, „LCD-Anzeige“, „LMV“, 5

Die Positionierung bezieht sich auf die obere linke Ecke des Zeichens, wenn man es normal ansieht. Also,
wenn du 100,100 umdrehst, ist der obere linke Pixel des ersten Zeichens bei 100,100 und der Text ist dann über
y=101 und links von x=101. Genauso wird „R“ in der Ausrichtungszeichenfolge aus der Perspektive des
Zeichens gesehen, egal wie es ausgerichtet ist (nicht vom Bildschirm aus).

Transparenter Text
Der VGA- oder HDMI-Videoausgang oder LCD-Displays, die SSD1963, ST7796S, ILI9341, ST7789_320
oder ILI9488 mit angeschlossenem MISO verwenden, können transparenten Text anzeigen.

In diesem Fall ermöglicht der Befehl TEXT die Verwendung von -1 für die Hintergrundfarbe. Das bedeutet,
dass der Text über den Hintergrund gezeichnet wird, wobei das Hintergrundbild durch die Lücken zwischen
den Buchstaben hindurchscheint.

Seite88 PicoMite-Benutzerhandbuch

Framebuffer und Ebenen
Alle Varianten der Firmware können einen oder zwei Framebuffer im Speicher und einen oder zwei Layer-
Puffer erstellen (dies ist speicherabhängig). Dabei handelt es sich um Speicherbereiche mit derselben Breite
und Höhe wie das Hauptdisplay. Bei HDMI- und VGA-Displays haben sie dieselbe Farbtiefe wie der aktuelle
Modus. Bei LCD-Displays haben sie 4 Bit pro Pixel (16 Farben).

Je nach Firmware-Version und aktuellem Anzeigemodus werden Framebuffer oder Layer-Puffer entweder mit
vorab zugewiesenem Speicher oder mit Speicher aus dem Benutzerspeicher erstellt.

Framebuffer können zum Erstellen von Bilddaten verwendet werden, die auf das physische Display kopiert
werden können. Layer-Puffer werden in der Regel zum Erstellen von Teilbildern verwendet, die über ein
Hintergrunddisplaybild gelegt werden können und eine effiziente Methode zum Verschieben von
Anzeigeelementen über einen statischen Hintergrund bieten.

Alle Standard-Grafikzeichnungsbefehle können auf einem Framebuffer oder Layer-Puffer genauso verwendet
werden wie beim Schreiben auf die physische Anzeige. Der Befehl FRAMEBUFFER WRITE wird verwendet,
um das Ziel der Grafikausgabe mithilfe eines Codes zu steuern.

Der Code ist ein einzelnes Zeichen, das Folgendes sein kann:

N Das physische Ausgabegerät.

F Der Framebuffer.

2 Ein zweiter Framebuffer (nur RP2350)

L Der Layerbuffer

T Ein zweiter Layerbuffer (nur RP2350)

Die grundlegenden Framebuffer-Befehle sind:

FRAMEBUFFER CREATE ‘ Code F

FRAMEBUFFER LAYER ‘ Code L

FRAMEBUFFER CLOSE

FRAMEBUFFER WRITE Code

FRAMEBUFFER COPY code1, code2 [,B]

Weitere Framebuffer-Befehle findest du in den detaillierten Befehlsbeschreibungen.

Bei den VGA- und HDMI-Versionen der Firmware werden die Ebenen je nach Anzeigemodus und CPU-
Geschwindigkeit (>=252 MHz) automatisch über das Hauptanzeigebild gelegt, wenn es auf den Bildschirm
ausgegeben wird. s Fall von LCD-Displays wird der Befehl FRAMEBUFFER MERGE verwendet, um das
endgültige Bild aus einem Framebuffer und einem Layer-Puffer zu erstellen. Das Spiel PETSCII robots zeigt,
wie diese Technik sehr effektiv eingesetzt werden kann.

Die automatische Anwendung eines Layer-Puffers ist in den VGA-Versionen Modus 2 und Modus 3 (nur
RP2350) sowie in den HDMI-Modi 2, 3, 4 und 5 implementiert. Zwei Layer-Puffer sind nur auf dem RP2350
und in den folgenden Modi verfügbar: VGA-Modus 2, HDMI-Modi 2 und 5.

BLIT- und Sprite-Befehle
In früheren Versionen der Firmware waren die Befehle „blit” und „sprite” Synonyme für dieselbe Funktion. Ab
Version 6.00.00 sind es separate Befehle. Der Unterschied besteht darin, dass BLIT eine einfache
Speicheroperation ist, bei der Daten von einem Display oder Speicher auf ein Display oder einen Speicher
kopiert werden. Sprites sind komplexer und ermöglichen es dem Programmierer, Elemente über einem
Hintergrund anzuzeigen und sie dann über den Hintergrund zu bewegen, ohne das Hintergrundbild zu
beschädigen. Darüber hinaus kann der Programmierer die Sprite-Funktionalität nutzen, um Kollisionen
zwischen Sprites sowie zwischen einem Sprite und den Rändern des Displays zu erkennen.

Sprites können nur verwendet werden, wenn das Display das Lesen aus seinem Framebuffer unterstützt, und
auch die Blit-Funktionalität ist in diesem Fall eingeschränkt. Sprites sind für alle Versionen der Firmware
aktiviert, wenn sie auf einem In-Memory-Framebuffer und VGA- und HDMI-Versionen der Firmware direkt
mit dem Bildschirm verwendet werden.

Sprites werden immer als RGB121-Nibbles mit 2 Pixeln pro Byte gespeichert. Im Gegensatz dazu werden
BLIT-Puffer als RGB888-Werte gespeichert und können daher mit Vollfarb-LCD-Displays verwendet werden.
Dies geht natürlich zu Lasten eines deutlich höheren Speicherbedarfs.

Weitere Infos zur Verwendung von Sprites findest du unter dem Befehl SPRITE und der Funktion zusammen
mit Anhang G.

PicoMite Benutzerhandbuch Seite 89

https://www.thebackshed.com/forum/ViewTopic.php?TID=15819&PID=227666#227666

Wenn das Display transparenten Text anzeigen kann, kannst du mit dem BLIT-Befehl einen Teil des gerade
angezeigten Bildes in einen Speicherpuffer kopieren und später wieder auf das Display kopieren. Das ist
praktisch, wenn du etwas über den Hintergrund zeichnen und später wieder entfernen willst, ohne das Bild im
Hintergrund zu beschädigen. Beispiele hierfür sind Spiele, in denen sich eine Figur vor einer Landschaft
bewegt, oder die sich bewegende Nadel eines fotorealistischen Messgeräts.

Die verfügbaren Standard-BLIT-Befehle sind:
BLIT READ #b, x, y, w, h

BLIT WRITE #b, x, y [,mode]

BLIT LOAD #b, f$, x, y, w, h

BLIT CLOSE #b

#b ist die Puffernummer im Bereich von 1 bis 64. x und y sind die Koordinaten der oberen linken Ecke und w
und h sind die Breite und Höhe des Bildes. READ kopiert das angezeigte Bild in den Puffer, WRITE kopiert
den Puffer auf das Display und CLOSE gibt den Puffer frei und holt sich den verwendeten Speicher zurück.
LOAD lädt eine Bilddatei in den Puffer.

BLIT LOAD und BLIT WRITE funktionieren auf jedem Display, während BLIT und BLIT READ nur auf
Displays funktionieren, die transparenten Text unterstützen (d. h. mit SSD1963, ILI9341, ST7789_320 oder
ILI9488 mit angeschlossenem MISO) sowie auf VGA- und HDMI-Displays und allen In-Memory-
Framebuffern.

Mit diesen Befehlen kann ein Teil der Anzeige an einen anderen Ort kopiert werden (durch Kopieren in einen
Puffer und anschließendes Schreiben an eine andere Stelle), aber einfacher ist es, eine alternative Version des
BLIT-Befehls wie folgt zu verwenden:

BLIT x1, y1, x2, y2, w, h

Damit wird ein Teil des Bildes an x1/y1 an den Ort x2/y2 kopiert. w und h geben die Breite und Höhe des zu
kopierenden Bildes an. Der Quell- und der Zielbereich können sich überlappen, und der BLIT-Befehl führt die
Kopie korrekt aus.

Diese Form des BLIT-Befehls ist besonders nützlich, um Grafiken zu erstellen, die horizontal oder vertikal
scrollen können, wenn neue Daten hinzugefügt werden.

Außerdem bietet die Firmware die Befehle BLIT MEMORY, BLIT COMPRESSED, BLIT FRAMEBUFFER
und BLIT MERGE. Diese erweiterten Befehle können zum Programmieren von Spielen mit Hunderten von
Anzeigeelementen verwendet werden, wie z. B. der Portierung von PETSCII-Robotern auf MMBasic.

Bild laden
Mit den Befehlen LOAD IMAGE und LOAD JPG kann ein Bild aus dem Flash-Dateisystem oder von der SD-
Karte geladen und auf dem LCD-Display angezeigt werden. Damit kann ein Logo gezeichnet oder den auf dem
Display gezeichneten Grafiken ein verzierter Hintergrund hinzugefügt werden.

Erweiterte Grafik

NICHT VERFÜGBAR IN DEN VERSIONEN VGA/HDMI UND WEBMITE RP2040

Die PicoMite-Firmware
enthält eine Reihe von
erweiterten
Grafikfunktionen, mit
denen Programmierer ganz
einfach
berührungsempfindliche
Steuerelemente auf einem
LCD-Bildschirm erstellen
können, wie in der
Abbildung gezeigt. Dazu
gehören
Bildschirmschalter,
Schaltflächen,
Anzeigeleuchten,
Tastaturen usw.

Seite90 PicoMite-Benutzerhandbuch

https://www.thebackshed.com/forum/ViewTopic.php?TID=15819&PID=227666#227666

MMBasic zeichnet die Steuerung und animiert sie (d. h., ein Schalter scheint bei Berührung gedrückt zu
werden). Der BASIC-Programmierer muss lediglich einen einzigen Befehl aufrufen, um die grundlegenden
Details der Steuerung festzulegen.

Mit diesen Funktionen lässt sich ganz einfach ein Bedienfeld erstellen, um beliebige Steuerungsfunktionen wie
Drehmaschinen, Motorsteuerungen, Heizungssysteme, kleine industrielle Prozesse usw. zu verwalten.

Die erweiterten Grafikfunktionen werden ausführlich im Dokument „Advanced Graphics Functions.pdf”
beschrieben, das in der Firmware-Download-Datei enthalten ist.

3D-Engine

NICHT IN WEBMITE-VERSIONEN VERFÜGBAR

Die 3D-Engine von enthält zehn Befehle zur Bearbeitung von 3D-Bildern, darunter das Einstellen der Kamera,
das Erstellen, Ausblenden, Drehen usw. Eine vollständige Beschreibung dieser Befehle und ihrer Verwendung
findest du im Dokument „3D_Graphics_User_Manual.pdf“ im PicoMite-Firmware-Download.

Beispiel für LCD-Grafiken
Als Beispiel für die Verwendung der einfachen Grafikbefehle zeichnet das folgende Programm eine einfache
Digitaluhr auf einem ILI9341-basierten LCD-Display. Das Programm wird beendet und kehrt zur
Eingabeaufforderung zurück, wenn der Bildschirm berührt wird.

Zuerst musst du die Anzeige- und Touch-Optionen konfigurieren, indem du die am Anfang dieses Kapitels
aufgeführten Befehle eingibst. Das genaue Format hängt davon ab, wie du das Display angeschlossen hast.

Gib dann das Programm ein und führe es aus:
CONST DBlue = RGB(0, 0, 128) ' Eine dunkelblaue Farbe
COLOUR RGB(GREEN), RGB(BLACK) ' Standardfarben festlegen
FONT 1, 3 ' Standardschriftart festlegen

BOX 0, 0, MM.HRes-1, MM.VRes/2, 3, RGB(RED), DBlue

DO
 TEXT MM.HRes/2, MM.VRes/4, TIME$, „CM”, 1, 4, RGB(CYAN), DBlue
 TEXT MM.HRes/2, MM.VRes*3/4, DATE$, „CM“
 WENN TOUCH(X) <> -1 DANN ENDE
LOOP

Dieses Programm fängt damit an, eine Konstante mit einem Wert zu definieren, der einer dunkelblauen Farbe
entspricht, und legt dann die Standardeinstellungen für die Farben und die Schriftart fest. Anschließend
zeichnet es ein Feld mit roten Wänden und einem dunkelblauen Innenraum.

Danach geht das Programm in eine Endlosschleife, wo es drei Sachen macht:

1. Es zeigt die aktuelle Uhrzeit in dem zuvor gezeichneten Kasten an. Die Zeichenfolge wird sowohl
horizontal als auch vertikal in der Mitte des Kastens zentriert gezeichnet. Beachte, dass der Befehl TEXT
die Standardschriftart und -farben überschreibt, um seine eigenen Parameter festzulegen.

2. Zeichnet das Datum zentriert in der unteren Hälfte des Bildschirms. In diesem Fall verwendet der Befehl
TEXT die zuvor festgelegten Standardschriftart und -farben.

3. Es prüft, ob der Bildschirm berührt wird. Das wird angezeigt, wenn die Funktion TOUCH(X) einen
anderen Wert als -1 zurückgibt. In diesem Fall wird das Programm beendet.

Die Bildschirmanzeige sollte so aussehen (die in dieser Abbildung verwendete Schriftart ist anders):

PicoMite Benutzerhandbuch Seite 91

WiFi- und Internetfunktionen
 NUR WEBMITE-VERSION

Dieses Kapitel gibt einen Überblick über die WiFi- und Internetfunktionen, die in der WebMite-Version für den
Raspberry Pi Pico W und den Raspberry Pi Pico 2 W implementiert sind.

Diese Funktionen sind komplex, daher solltest du ein paar Punkte beachten:

 Die Implementierung der Internetprotokolle beansprucht viele Ressourcen des Prozessors (insbesondere
RAM), daher sollte die WebMite-Firmware nur verwendet werden, wenn WLAN- und
Internetkonnektivität wichtig sind und gewisse Leistungseinbußen im Vergleich zum Standard-Raspberry
Pi Pico in Kauf genommen werden können.

 Dieses Handbuch beschreibt, wie WebMite mit den WLAN- und Internetprotokollen zusammenarbeitet,
und enthält ein paar einfache Beispiele, aber es geht nicht auf HTML, TCP und die vielen anderen
Protokolle und Konventionen ein. Diese können für Neulinge verwirrend sein, die sich daher mit einigen
der vielen im Internet verfügbaren Einführungen vertraut machen sollten.

 Bei der Verarbeitung komplexer Internetprotokolle kann die WebMite-Firmware verwirrt werden und
hängen bleiben oder einen Fehler ausgeben und zur Eingabeaufforderung zurückkehren. Um dies zu
ermöglichen, sollten Programme die WATCHDOG-Funktion verwenden, um solche Situationen zu
beheben. Es wird auch empfohlen, das Programm von Zeit zu Zeit (z. B. einmal pro Woche) mit CPU
RESTART einen Neustart zu erzwingen, um sicherzustellen, dass die Protokollstacks zurückgesetzt
werden.

Verbindung zu einem WLAN-Netzwerk herstellen
Bevor du irgendetwas tust, musst du die WLAN-Funktion auf dem WebMite aktivieren. Dazu gibst du den
folgenden Befehl in die Befehlszeile ein:

OPTION WIFI ssid, password

Dabei ist „ssid” der Name des WLAN-Netzwerks und „password” das Sicherheitspasswort, das für den Zugriff
auf das Netzwerk verwendet wird. Beide sind Zeichenfolgen, und wenn Zeichenfolgenkonstanten verwendet
werden, sollten sie wie in diesem Beispiel in Anführungszeichen gesetzt werden:

OPTION WIFI „MyNetwork”, „secret”

Nach der Eingabe startet das WebMite neu, was bedeutet, dass du die USB-Verbindung und den Zugriff auf die
Konsole verlierst. Wenn du die Verbindung schnell wiederherstellst, wird die folgende Meldung angezeigt:

Verbindung zum WLAN wird hergestellt...
Verbunden 192.168.1.52

Die in der letzten Zeile angegebene Adresse ist die IP-Adresse, die dem WebMite vom Router zugewiesen
wurde und je nach Netzwerk variiert. Wenn der WebMite keine Verbindung herstellen kann, wird folgende
Meldung angezeigt:

Verbindung zum WLAN wird hergestellt...
Verbindung fehlgeschlagen.

Wenn die Verbindung nicht klappt, solltest du die Einstellungen deines WLAN-Routers checken:

 Die WLAN-Sicherheit muss WPA-PSK mit TKIP- oder AES-Verschlüsselung (oder beidem) sein.

 Für den WLAN-Zugang muss ein Passwort festgelegt sein.

 DHCP muss konfiguriert sein.

Dieser Befehl muss nur einmal eingegeben werden und wird bei jedem Neustart deines WebMite gespeichert.
Du kannst die Einstellung mit dem Befehl OPTION LIST überprüfen. Wenn die Verbindung hergestellt ist,
kannst du auch die zugewiesene IP-Adresse wie folgt überprüfen:

> PRINT MM.Info(IP-Adresse)
192.168.1.52

Bei manchen Routern kann es etwas dauern oder mehrere Versuche brauchen, bis die Verbindung hergestellt
ist. Wenn du also OPTION AUTORUN ON benutzt, solltest du am Anfang deines Programms etwas wie das
hier einfügen:

DO WHILE MM.INFO(IP-ADRESSE) = "0.0.0.0"
 IF TIMER > 5000 THEN CPU RESTART
LOOP

Seite92 PicoMite-Benutzerhandbuch

Dadurch wird 5 Sekunden lang auf eine Verbindung gewartet und bei fehlender Verbindung ein Neustart
durchgeführt.

Fernzugriff auf die Konsole
Du kannst dich über Telnet per WLAN mit der Konsole des WebMite verbinden. Das ist praktisch, wenn das
Gerät an einem schwer zugänglichen Ort steht. Sobald die Verbindung über Telnet hergestellt ist, kannst du
alles machen, was du normalerweise über die USB-Konsole machen würdest, einschließlich des Ausführens
des Editors.

Um diese Funktion zu aktivieren, gib Folgendes in die Befehlszeile ein: OPTION TELNET CONSOLE ON

Das musst du nur einmal eingeben und es wird bei jedem Neustart deines WebMite gespeichert. Dadurch wird
der WebMite neu gestartet, sodass du dich wieder mit der USB-Konsole verbinden musst.

Tera Term (http://tera-term.en.lo4d.com) unterstützt Telnet und wird für diese Aufgabe empfohlen, da es eine
gute VT100-Emulation bietet und das XModem-Dateiübertragungsprotokoll unterstützt.

Dateiübertragung
Dateien können über XModem oder TFTP zum und vom WebMite übertragen werden. XModem wird von Tera
Term unterstützt und funktioniert über Telnet genauso wie über eine direkte serielle Verbindung. TFTP ist
jedoch viel schneller und zuverlässiger als XModem und daher die empfohlene Methode für die Übertragung
von Dateien zum und vom WebMite.

Ein TFTP-Server auf dem WebMite wird automatisch aktiviert, wenn du mit einem WLAN-Netzwerk
verbunden bist, sodass hier nichts weiter erforderlich ist. Du benötigst einen TFTP-Client für deinen PC, und es
gibt viele verschiedene Implementierungen für Windows, Mac OS und Linux. Beachte, dass in vielen Tutorials
zu TFTP die Einrichtung eines TFTP-Servers behandelt wird – dies ist jedoch nicht erforderlich, du benötigst
lediglich einen Client.

Bei Windows ist ein TFTP-Client im Betriebssystem dabei, aber du musst ihn über die Systemsteuerung
aktivieren. Dazu gehst du wie folgt vor:

Systemsteuerung -> Programme und Funktionen -> Windows-Funktionen
aktivieren oder deaktivieren

Scroll dann in der Liste nach unten und setz ein Häkchen bei TFTP-Client.

Um eine Datei von deinem PC an den WebMite zu senden, gib in einem Befehls- oder PowerShell-Fenster auf
deinem Windows-PC Folgendes ein („IP-Addr“ ist die IP-Adresse des WebMite):

TFTP -i IP-Addr PUT Dateiname

Und um eine Datei vom WebMite auf deinen PC zu kopieren:
TFTP -i IP-Adresse GET Dateiname

Um die Funktionen des TFTP-Clients aufzulisten, gib Folgendes ein:
TFTP -h

Ein alternativer und einfacher grafischer Windows-TFTP-Client ist: http://www.3iii.dk/linux/dd-wrt/tftp2.exe

Zeit abrufen
Ein üblicher erster Schritt in einem Programm ist, die Uhrzeit/das Datum abzurufen und die Uhr im WebMite
einzustellen. Damit wird auch überprüft, ob der WebMite eine Verbindung zum Internet herstellen kann.

Die Zeit wird mit dem Befehl WEB NTP wie folgt abgerufen:
WEB NTP [timeoffset [, NTPserver$]]

Dabei ist „timeoffset” die Zeitzone, in der du dich befindest, und „NTPserver$” der Name oder die IP-Adresse
des zu verwendenden Zeitservers. Dieser letzte Parameter ist optional. Wenn er weggelassen wird, verwendet
die Firmware einen öffentlichen Zeitserver-Pool. Wenn auch der Parameter „timeoffset” weggelassen wird,
wird die Uhr des WebMite auf UTC eingestellt.

Hier ein typisches Beispiel für ein Gerät in der Zeitzone von Los Angeles:
> WEB NTP -10
ntp address 27.124.125.251
NTP-Antwort erhalten: 08/03/2023 05:34:57

Wenn der WebMite keinen Internetzugang hat, bekommst du eine Fehlermeldung. Diese kann mit dem Befehl
ON ERROR SKIP abgefangen und eine geeignete Maßnahme ergriffen werden (z. B. Neustart oder Anzeige
einer Meldung für den Bediener).

Zum Beispiel:
ON ERROR SKIP 3

PicoMite Benutzerhandbuch Seite 93

http://www.3iii.dk/linux/dd-wrt/tftp2.exe
http://tera-term.en.lo4d.com/

WEB NTP -10
IF MM.ERRNO THEN WEB NTP -10
IF MM.ERRNO THEN PRINT „Fehler beim Herstellen der Internetverbindung“: CPU
RESTART

Wir versuchen den Befehl WEB NTP zweimal, falls der erste Versuch wegen eines Zeitfehlers nicht klappt
(das kann passieren) – beim zweiten Mal sollte es aber klappen.

Implementierung eines Webservers
Eine häufige Anforderung ist die Einrichtung eines Webservers, der die vom WebMite gesammelten Daten auf
einer benutzerfreundlichen Webseite anzeigt.

Der erste Schritt besteht darin, die Serverfunktion mit diesem Befehl in der Befehlszeile zu konfigurieren:
OPTION TCP SERVER PORT nn

Dabei ist „nn” die zu verwendende Portnummer (normalerweise 80 für eine Webseite). Der Befehl lautet in der
Regel:

OPTION TCP SERVER PORT 80

Wie bei den anderen oben aufgeführten OPTION-Befehlen muss dieser Befehl nur einmal eingegeben werden
und wird bei jedem Neustart des WebMite gespeichert. Dadurch wird auch der WebMite neu gestartet, und
wenn du dich schnell wieder verbindest, siehst du Folgendes (mit einer anderen IP-Adresse):

Server wird unter 192.168.1.52 auf Port 80 gestartet

Mit dem obigen Schritt hast du die WebMite-Firmware so konfiguriert, dass sie einen TCP-Server unterstützt.
In deinem Programm musst du den Server mit dem folgenden Befehl starten:

WEB TCP INTERRUPT InterruptSub

Dabei ist „InterruptSub” der Name deiner Subroutine, die immer dann aufgerufen wird, wenn eine Anfrage
vom TCP-Server empfangen wird. Diese Subroutine kann den Befehl WEB TCP READ verwenden, um die
eingehende Anfrage vom Remote-Client zu lesen, und der Befehl WEB TRANSMIT PAGE kann verwendet
werden, um die angeforderte Webseite zu senden.

Hier ist zum Beispiel das komplette Programm zum Implementieren einer einfachen Webseite (vergiss nicht,
zuerst den Befehl OPTION TCP SERVER zu verwenden):

1 DIM buff%(4096/8)
2 WEB TCP INTERRUPT WebInterrupt
3 DO
4 '<hier irgendwas machen>'
5 LOOP
6
7 SUB WebInterrupt
8 LOCAL a%, p%, t%, s$
9 FOR a% = 1 To MM.INFO(MAX CONNECTIONS)
10 WEB TCP READ a%, buff%()
11 p% = LINSTR(buff%(),"GET")
12 t% = LINSTR(buff%(),"HTTP")
13 Wenn (p% <> 0) Und (t% > p%) Dann
14 WEB TRANSMIT PAGE a%, „index.html”
15 ENDIF
16 NEXT a%
17 END SUB

Hier kommt die detaillierte Beschreibung des Programms:

Zeile 1 Zuerst wird ein 4K-Byte-Puffer für die eingehende Anfrage vom Client erstellt. In diesem Beispiel
werden die Long-String-Befehle in MMBasic für die Verarbeitung der Daten verwendet, und dies
ist der Puffer dafür (eine Beschreibung von Long Strings findest du im nächsten Kapitel mit dem
Titel „Long Strings“). Die Größe dieses Puffers begrenzt die vom Client empfangene Datenmenge.

Zeile 2 Hier wird der Server gestartet und die Interrupt-Subroutine für die Verarbeitung eingehender
Anfragen als „WebInterrupt” festgelegt.

Zeile 4 Dies ist Ihre Hauptprogrammschleife, die normalerweise Daten sammelt, Ausgänge umschaltet usw.

Zeile 7 Das ist die Unterroutine, die jedes Mal aufgerufen wird, wenn eine Anfrage vom Browser des
Remote-Clients kommt.

Zeile 9 Durchlaufe alle eingehenden Verbindungen (es kann mehrere gleichzeitige Verbindungen geben).

Zeile 10 Lies die eingehende Nachricht in den langen Zeichenfolgenpuffer ein.

Seite94 PicoMite-Benutzerhandbuch

Zeilen 11 und 12 Hol dir die Positionen der Schlüsselwörter in der Nachricht.

Zeile 13 Überprüfe, ob die Schlüsselwörter vorhanden sind und in der richtigen Reihenfolge stehen.

Zeile 14 Die Seite senden. Das ist eine Datei namens index.html, die sich im Standardverzeichnis auf dem
internen Flash-Dateisystem oder der SD-Karte befindet. Sie ist im HTML-Format, was bedeutet,
dass sie Tags wie <h1>Dies ist eine Überschrift</h1> enthalten kann. Weitere
Informationen findest du unter „Eine typische Webseite“ weiter unten.

Einfügen von Daten in die Webseite
Normalerweise musst du Daten, die vom BASIC-Programm generiert wurden, in die übertragene Webseite
einfügen. Das geht ganz einfach, indem du den Namen der BASIC-Variablen in geschweifte Klammern (d. h.
{ und }) in den Text der Webseite einfügst.

Wenn dein Programm zum Beispiel eine Variable namens CurrentTemp mit dem Wert 24 hat, die die
aktuelle Temperatur angibt, würde die folgende Webseite: Die Temperatur beträgt {CurrentTemp}
im Browser des Kunden wie folgt angezeigt werden: Die Temperatur beträgt 24.

Der Bezeichner zwischen den geschweiften Klammern kann eine Gleitkommazahl, eine Ganzzahl oder eine
Zeichenfolge, ein Array-Element und sogar ein Ausdruck (z. B. A + B) sein. Du kannst auch Funktionen
verwenden. Wenn du also eine Gleitkommazahl mit der richtigen Anzahl von Dezimalstellen formatieren
möchtest, kannst du die Formatierungsfunktion Str$() verwenden. Beachte, dass ein Fehler im Ausdruck einen
entsprechenden Fehler verursacht, wenn der Befehl WEB TRANSMIT PAGE ausgeführt wird.

Wenn du in deiner Webseite eine öffnende geschweifte Klammer brauchst, kannst du zwei als Paar verwenden
(z. B. {{), die dann in eine einzelne öffnende Klammer umgewandelt werden. Eine schließende geschweifte
Klammer ohne öffnendes Gegenstück bleibt unverändert.

Senden mehrerer Seiten
Wenn ein Remote-Client Daten anfordert, ohne eine Seite anzugeben, sendet er die Anfrage als GET / HTTP,
wobei der Schrägstrich die Standardseite für den Server darstellt (normalerweise index.html). Im obigen
Beispiel wurde dies nicht überprüft, sondern für alle Anfragen wurde einfach dieselbe Seite gesendet.

Wenn deine Seite aber anklickbare Links wie Nächste Seite enthält und
der Benutzer auf diesen Link klickt, sendet der Remote-Client eine weitere Anfrage mit GET /page2.html
HTTP.

Dies lässt sich leicht bewerkstelligen, indem die angeforderten Daten zwischen den Schlüsselwörtern GET und
HTML überprüft werden. Ersetze beispielsweise Zeile 15 im obigen Beispiel durch Folgendes (s$ ist die
angeforderte Datei):

s$ = LGetStr$(buff%(), p% + 4, t% - p% - 5)
IF s$ = "/" THEN

WEB TRANSMIT PAGE a%,"index.html"
ELSE IF s$ = "/page2.html" THEN

WEB-ÜBERTRAGUNGSSEITE a%,"page2.html"
ENDIF

Das kannst du auf so viele Seiten ausweiten, wie du brauchst.

Ein Bild senden
Du kannst ein Bild mit dem folgenden HTML-Code in deine Webseite einfügen.
Wenn der Remote-Browser das liest, sendet er die folgende Anfrage GET /pix.jpg HTTP. Du kannst dann
das angeforderte Bild mit dem fett gedruckten Code senden:

s$ = LGetStr$(buff%(), p% + 4, t% - p% - 5)
IF s$ = "/" THEN

WEB TRANSMIT PAGE a%,"index.html"
ELSE IF s$ = "/page2.html" THEN

WEB TRANSMIT PAGE a%,"page2.html"
SONST WENN s$ = "/pix.jpg" DANN

WEB TRANSMIT FILE a%,"pix.jpg","image/jpeg"
ENDIF

Beachte, dass pix . jpg ein JPEG-Bild sein muss, das sich im Standardverzeichnis des internen Flash-
Dateisystems oder auf der SD-Karte befindet. Der WebMite ist kein schneller Server, daher sind kleine und
einfache Bilder besser.

PicoMite Benutzerhandbuch Seite 95

Der Parameter „image/jpeg” ist als MIME-Typ bekannt, und es gibt viele verschiedene Typen. Andere gängige
Bildtypen sind image/bmp, image/png und image/gif.

Antwort „Seite nicht gefunden” (404)
Wenn ein Remote-Client eine Seite oder Datei anfordert, die von deinem Programm nicht unterstützt wird,
kannst du den Befehl WEB TRANSMIT CODE verwenden, um wie folgt einen 404-Fehler zu senden:

s$ = LGetStr$(buff%(), p% + 4, t% - p% - 5)
IF s$ = "/" THEN

WEB TRANSMIT PAGE a%,"index.html"
ELSE IF s$ = "/page2.html" THEN

WEB TRANSMIT PAGE a%,"page2.html"
SONST WENN s$ = "/pix.jpg" DANN

WEB TRANSMIT FILE a%,"pix.jpg","image/jpeg"
SONST

WEB TRANSMIT CODE a%, 404
ENDIF

Live-Grafikdaten auf einer Webseite
Zahlen und Text auf einer Webseite sind nützlich, aber oft möchtest du auch grafische Elemente wie
Kreisdiagramme, Liniendiagramme, historische Trends usw. einfügen, die aus den vom Programm
gesammelten Daten abgeleitet wurden. Das kannst du auf Umwegen machen, indem du WebMite mit einem
virtuellen Anzeigefeld konfigurierst, dann mit den Standard-Zeichenbefehlen (Pixel, Linie, Kreis usw.) auf
diesem -Display zeichnest und das Ganze als BMP-Bild speicherst. Diese Datei kann dann als Bild in die
Webseite eingebunden werden. Im Einzelnen läuft das so ab:

Zuerst muss ein virtuelles Display konfiguriert werden. Es gibt zwei, die du verwenden kannst: VIRTUAL_C
ist ein Bild mit 320 x 240 Pixeln und 16 Farben, und VIRTUAL_M ist ein monochromes Bild mit 640 x 480
Pixeln. Zum Beispiel:

OPTION LCDPANEL VIRTUAL_C

Wie bei den anderen OPTION-Befehlen muss dieser Befehl an der Eingabeaufforderung eingegeben werden,
führt zu einem Neustart und muss nur einmal eingegeben werden.

Dann kannst du in deinem Programm mit den im Kapitel Grafikbefehle und -funktionen beschriebenen
Befehlen Bilder und Text auf diesem „Display” zeichnen. Zum Beispiel:

CIRCLE 100, 100, 50, 1, 1, RGB(rot), RGB(blau)
LINE 10, 10, 200, 200, 1, RGB(yellow)

Wenn du fertig bist, speicher dieses Bild:
SAVE COMPRESSED IMAGE "graph.bmp"

In die Webseite, die du bereitstellst, kannst du dieses Bild mit dem folgenden HTML-Code einfügen:

Schließlich musst du in deinem BASIC-Programm dafür sorgen, dass diese Datei gesendet wird, wenn die
Webseite wie oben beschrieben vom Remote-Browser geladen wird (siehe Senden eines Bildes). Füge zum
Beispiel Folgendes in die oben beschriebene ELSE IF-Kette ein:

ELSE IF s$ = "/graph.bmp " THEN
 WEB TRANSMIT FILE a%, "graph.bmp", "image/bmp"

Dein BASIC-Programm muss diese Datei aktualisieren, wenn neue Daten aufgezeichnet werden. Da dies aber
nur nötig ist, wenn der Remote-Browser das Bild anfordert, sollte es nicht zu einer übermäßigen Abnutzung des
Flash-Speichers kommen.

Ein vollständiger Allzweck-Server
Auf den vorherigen Seiten wurden die einzelnen Komponenten beschrieben, aus denen ein Webserver besteht.
Nachfolgend findest du ein Beispiel für einen kompletten und integrierten Allzweck-Server, der die meisten
Anfragen eines Browsers bearbeiten kann. Er überprüft die Erweiterung der angeforderten Datei und verwendet
dann den entsprechenden WEB TRANSMIT-Befehl, um die angeforderten Daten zu senden. Er kann als Drop-
in-Modul für jedes Projekt verwendet werden, bei dem der WebMite als Webserver fungieren soll.

WEB TCP INTERRUPT WebInterrupt
DO

'<hier eine Verarbeitung durchführen>'
LOOP

Seite96 PicoMite-Benutzerhandbuch

' Subroutine zur Bearbeitung aller Webserver-Anfragen
SUB WebInterrupt
 LOCAL a%, p1%, p2%, file$, buff%(4096/8)
 FOR a% = 1 To MM.INFO(MAX CONNECTIONS)

 WEB TCP READ a%, buff%()
 P1% = LINSTR(buff%(),"GET")
 P2% = LINSTR(buff%(),"HTTP")
 Wenn (p1% <> 0) Und (p2% <> 0) Und (p2% > p1%) Dann

 file$ = LCASE$(LGetStr$(buff%(), p1% + 4, p2% - p1% - 5))
WENN file$ = "/" DANN file$ = "/index.html"
BEI FEHLER ÜBERSPRINGEN
file$ FÜR EINGABE ALS #1 ÖFFNEN ' Überprüfe, ob die Datei da ist
WENN MM.ERRNO DANN WEB TRANSMIT CODE a%, 404 : FORTSETZEN FÜR
#1 schließen

 WÄHL FALL RECHTS$(Datei$, 4)
 CASE "html", ".htm", ".txt"
 WEB TRANSMIT PAGE a%, file$
 CASE ".bmp", ".png", ".gif"
 WEB TRANSMIT FILE a%, file$, "image/" + RIGHT$(file$, 3)
 CASE ".jpg", "jpeg"
 WEBÜBERTRAGUNGSDATEI a%, Datei$, „image/jpeg“
 FALL ".ico"
 WEB TRANSMIT FILE a%, file$, "image/vnd.microsoft.icon"
 END SELECT

 ENDIF
 NEXT a%
END SUB

Beachte, dass alle Dateien im Stammverzeichnis des Flash-Dateisystems oder der SD-Karte gespeichert werden
müssen und ihre Namen nur Kleinbuchstaben enthalten dürfen (das Flash-Dateisystem unterscheidet zwischen
Groß- und Kleinschreibung).

Eine typische Webseite
Die Webseite, die mit dem Befehl WEB TRANSMIT PAGE übertragen werden soll, muss nach dem HTML-
Standard aufgebaut sein. Sie kann so einfach wie eine einzelne Textzeile ohne Formatierung sein, z. B.:

Die Temperatur beträgt {CurrentTemp}

Oder du kannst eine einfache Formatierung einfügen:
<title>WebMite</title>
<h2>Temperaturüberwachung</h2>
Die Temperatur beträgt {CurrentTemp}

Oder du kannst eine komplexe Seite senden. Diese haben normalerweise einen Kopf- und einen Hauptteil,
unterteilen den Text in Absätze und verwenden das Break-Tag für Abstände. Hier ist das Grundgerüst einer
solchen Seite:

<html>
<head>
<title>WebMite</title>
</head>
<body>
<h1>Das ist eine Überschrift</h1>

<p>Die Temperatur ist {CurrentTemp}</p>
</body>
</html>

Im Internet gibt's viele Ressourcen mit HTML-Tutorials für Anfänger. Ein typisches Beispiel ist
http://www.simplehtmlguide.com/. Außerdem gibt's viele WYSIWYG-HTML-Editoren. Zum Beispiel:
https://onlinehtmleditor.dev/

Eingabefelder und Steuerung
Mit HTML-Eingabefeldern kannst du Schaltflächen, Kontrollkästchen, Optionsfelder usw. auf deiner Webseite
platzieren, über die der Benutzer Anfragen an den WebMite senden kann. Auf diese Weise kann der Benutzer
aus der Ferne Dinge ein- und ausschalten, Steuerungsparameter einstellen und vieles mehr – alles über die vom
WebMite bereitgestellte Webseite.

PicoMite Benutzerhandbuch Seite 97

https://onlinehtmleditor.dev/
https://onlinehtmleditor.dev/
http://www.simplehtmlguide.com/
http://www.simplehtmlguide.com/

Dazu musst du ein HTML-Formular in die Webseite einfügen, das ein oder mehrere Eingabefelder enthält. Es
gibt viele Arten von Eingabefeldern zur Auswahl (siehe https://www.w3schools.com/tags/att_input_type.asp),
aber in unserem einfachen Beispiel verwenden wir zwei Optionsfelder, um ein fiktives Gerät ein- und
auszuschalten.

Der folgende Code muss in die Standard-Webseite (d. h. index.html) eingefügt werden:
<form method='get'>
 <input name='RB' type='radio' value='OFF' {offb$} onClick='this.form.submit()'> Aus
 <input name='RB' type='radio' value='ON' {onb$} onClick='this.form.submit()'> Ein
</form>

Dadurch werden zwei Optionsfelder erstellt, die im Browser so aussehen:

Beachte, dass der obige HTML-Code zwei BASIC-Variablen (offb$ und onb$) enthält, die durch den Befehl
WEB TRANSMIT PAGE ersetzt werden. Diese Variablen steuern, wie die Schaltfläche angezeigt wird. Wenn
sie auf eine leere Zeichenfolge gesetzt sind, wird die Schaltfläche als nicht aktiviert angezeigt. Wenn sie auf die
Zeichenfolge „checked='checked'” gesetzt sind, wird die Schaltfläche als aktiviert angezeigt. Diese
Variablen sollten beim Start des Programms initialisiert werden.

Wenn der Benutzer auf die erste Schaltfläche klickt, sendet der Browser eine Anfrage mit folgendem Inhalt:
GET /?RB=OFF HTML
und wenn auf die zweite Schaltfläche geklickt wird, lautet die Anfrage: GET /?RB=ON HTML

In der ELSE IF-Kette in der TCP-Interrupt-Subroutine können wir auf diese Anfragen reagieren:
ELSE IF s$ = "/?RB=OFF"
 ' <Code zum Ausschalten des Geräts hier einfügen>
 offb$ = "checked='checked'" : onb$ = ""
 WEBÜBERTRAGUNGSSEITE a%, "index.html"
SONST WENN s$ = "/?RB=ON"
 ' <Code hier einfügen, um das Gerät einzuschalten>
 offb$ = "" : onb$ = "checked='checked'"
 WEBÜBERTRAGUNGSSEITE a%, "index.html"

Im Grunde macht dieser Code nur Folgendes: Er schaltet das Gerät wie gewünscht ein oder aus, setzt die
Variablen onb$ und offb$, um den neuen Status der Schaltflächen anzuzeigen, und schickt dann die ganze
Webseite zurück an den Browser.

Dieses Beispiel lässt viele Details außer Acht, und du kannst es extrem kompliziert machen, wenn du mehrere
Eingaben mit Schaltflächen, Texteingaben, Dropdown-Listen, Passwortfeldern, Anfragen für Datei-Uploads
und vielem mehr hinzufügen möchtest. Dazu musst du dich jedoch tiefer mit HTML-Codierung befassen. Ein
Beispiel hierfür findest du im Projekt „Garden Watering Controller” unter: https://geoffg.net/retic.html

Implementierung eines TCP-Clients
Der WebMite kann auch als TCP-Client fungieren, um Daten von einem Remote-Server anzufordern. Dies wird
mit drei Befehlen verwaltet. Der erste lautet:

WEB OPEN TCP CLIENT Domain$, PortNumber

Damit wird eine TCP-Verbindung zu Domain$ (z. B. „openweathermap.org”) über die angegebene
PortNumber (normalerweise 80 für eine Webseite) hergestellt.

Wenn die Verbindung offen ist, kannst du mit diesem Befehl eine oder mehrere Anfragen senden:
WEB TCP CLIENT REQUEST query$, inbuf [, timeout]

Die zu sendende Anfrage lautet „query$” und die Antwort wird in „inbuf” gespeichert, bei dem es sich
normalerweise um eine lange Zeichenfolgenvariable wie buff%(4096/8) handelt. Die Größe dieses
Puffers (in Byte) begrenzt die vom Server empfangene Datenmenge und sollte erhöht werden, wenn mehr
Daten erwartet werden.

„timeout” ist optional und gibt die Zeitüberschreitung in Millisekunden an.

Wenn du auf eine Website zugreifst, kann „query$“ einfach „GET / HTTP“ sein, wodurch die Standardseite
dieser Website abgerufen wird. Dein Programm ist dann dafür zuständig, die gewünschten Daten aus der
Antwort herauszufiltern.

Zum Schluss schließt du die Verbindung mit:
WEB CLOSE TCP CLIENT

Das folgende Beispiel ist ein komplettes Programm (unter Verwendung dieser Befehle), um die aktuelle
Temperatur für die Stadt Paris von openweathermap.com abzurufen. Damit dies funktioniert, benötigst du ein

Seite98 PicoMite-Benutzerhandbuch

https://geoffg.net/retic.html
https://www.w3schools.com/tags/att_input_type.asp

(kostenloses) Konto bei Open Weather Map (https://openweathermap.org), das einen API-Schlüssel enthält.
Dabei handelt es sich um eine 32-stellige Hexadezimalzahl, mit der du die Abfrage durchführen kannst. Diese
Zahl sollte den Dummy-Schlüssel in der ersten Zeile ersetzen.

CONST Key = "nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn"
CONST Query = "GET /data/2.5/weather?q=Paris,fra&APPID="+Key+Chr$(13)+Chr$(10)
DIM buff%(4096/8)

WEB OPEN TCP CLIENT " api.openweathermap.org ", 80
WEB TCP CLIENT REQUEST Query, buff%()
WEB CLOSE TCP CLIENT
temp = VAL(JSON$(buff%(), "main.temp"))
PRINT „Die aktuelle Temperatur in Paris beträgt:“ temp - 273

Die Funktion JSON() wird benutzt, um den gewünschten Wert aus der Antwort im JSON-Format (JavaScript
Object Notation) zu holen.

Wenn du dieses Programm ausführst, solltest du was wie das hier sehen:
Verbunden
Aktuelle Temperatur in Paris: 13,54

Verwendung von UDP
Das User Datagram Protocol (UDP) ist ein schnelles und leichtgewichtiges Protokoll, das zum Senden von
Nachrichten zwischen Geräten verwendet wird. Es kann unzuverlässig sein, da es nicht garantiert, dass
Datenpakete zugestellt werden oder in der richtigen Reihenfolge ankommen. Es wird jedoch häufig für
zeitkritische Anwendungen verwendet, bei denen Geschwindigkeit Vorrang vor Zuverlässigkeit hat.

Das Einrichten eines UDP-Servers ist ähnlich wie das Einrichten eines TCP-Servers. Zuerst wird UDP mit der
folgenden Option in der Eingabeaufforderung aktiviert (dies führt auch zu einem Neustart):

OPTION UDP SERVER PORT port_nbr

In deinem Programm musst du den Server mit dem folgenden Befehl starten:
WEB UDP INTERRUPT InterruptSub

Wobei „InterruptSub” der Name deiner Subroutine ist, die immer dann aufgerufen wird, wenn der UDP-Server
eine Nachricht bekommt. In diesem Fall wird die IP-Adresse des sendenden Geräts in der schreibgeschützten
Variablen MM.ADDRESS$ gespeichert und die empfangene Nachricht in MM.MESSAGE$.

Du kannst eine UDP-Nachricht mit folgendem Befehl senden:
WEB UDP send ip_address$, port_nbr, message$

In der folgenden Demo werden zwei WebMites verwendet, die mit OPTION WIFI im selben Netzwerk
konfiguriert sind.

Bevor du loslegst, musst du beide WebMites mit OPTION UDP SERVER PORT 77 einrichten.

Notier dir die IP-Adresse des ersten WebMites und gib das folgende Programm ein:
WEB UDP interrupt myint
Do

'<hier einige Verarbeitungsschritte durchführen>'
Loop

' Unterprogramm unterbrechen
Sub myint

Drucke „Empfangen “ + mm.message$ + „ von “ + mm.address
Pause 100
WEB UDP send mm.address$, 77, „WebMite #1 message”

Ende Sub

Starte dann das Programm, das zunächst in einer Schleife nichts macht.

Gib auf dem zweiten WebMite das folgende Programm ein und ersetze dabei die IP-Adresse durch die des
ersten WebMite. Führe dann das Programm aus:

WEB UDP interrupt myint
WEB UDP send "192.168.1.127", 77, "Starting UDP echo"
Do

'<hier einige Verarbeitungsschritte durchführen>'
Loop

' Unterprogramm unterbrechen
Sub myint

Drucke „Empfangen “ + mm.message$ + „ von “ + mm.address$

PicoMite Benutzerhandbuch Seite 99

https://openweathermap.org/

Pause 100
WEB UDP send mm.address$, 77, „WebMite #2 message”

Ende Sub

Das Ergebnis ist ein echt schneller Ping-Pong-Austausch von UDP-Nachrichten zwischen den beiden
WebMites.

E-Mails senden
Wenn du ein Remote-Gerät wie WebMite hast, ist es praktisch, wenn es E-Mails verschicken kann, um Fehler
zu melden, über seinen Status zu berichten und so weiter. WebMite kann das über das SMTP-Protokoll
machen, um sich mit einem Server zu verbinden, der die E-Mail dann an den Empfänger weiterleitet.

Im folgenden Beispiel wird der kostenlose SMTP-Relay-Dienst von SMTP2GO verwendet, der 1000 E-Mails
pro Monat erlaubt (mehr als genug für das WebMite). Beachte, dass sie keine Registrierungsanfragen von
Leuten mit einer generischen kostenlosen E-Mail-Adresse (z. B. xxx@gmail.com) annehmen.

Um loszulegen, musst du dich kostenlos bei SMTP2GO (https://www.smtp2go.com/) anmelden, einen
verifizierten Absender registrieren und einen zugehörigen Benutzernamen und ein Passwort erstellen. Beide
müssen dann in Base64-kodierte Zeichenfolgen umgewandelt werden (die folgende Website erledigt das für
dich: https://www.base64encode.org).

Der Base64-kodierte Benutzername sollte die Zeichenfolge „ nnnnnnnnn ” in der ersten Zeile des folgenden
Programms ersetzen, während das Base64-kodierte Passwort die Zeichenfolge „xxxxxxxxxxxxx” in der
zweiten Zeile ersetzen sollte. Die anderen vier Zeilen am Anfang des Programms sollten ebenfalls durch deine
Daten ersetzt werden:

CONST userBase64$ = "nnnnnnnnnnnn"
CONST paswdBase64$ = "xxxxxxxxxxxx"
CONST mailfrom$ = "from@server.com"
CONST mailto$ = "to@server.com"
CONST subject$ = "Test-E-Mail"
CONST message$ = "Test von SMTP2GO "

CONST cr = Chr$(13)+Chr$(10)
DIM buff%(4096/8), body$

body$ = "Von: " + mailfrom$ + cr + "An: " + mailto$ + cr
body$ = body$ + "Betreff: " + subject$ + cr + cr
body$ = body$ + message$ + cr + "." + cr

WEB OPEN TCP CLIENT "mail.smtp2go.com", 2525
WEB TCP CLIENT REQUEST „EHLO” + cr, buff%()
WEB-TCP-CLIENT-ANFRAGE „AUTH LOGIN” + cr, buff%()
WEB-TCP-CLIENT-ANFRAGE userBase64$ + cr, buff%()
WEB-TCP-CLIENT-ANFRAGE paswdBase64$ + cr, buff%()
WEB-TCP-CLIENT-ANFRAGE „MAIL FROM: “ + mailfrom$ + cr, buff%()
WEB-TCP-CLIENT-ANFRAGE „RCPT TO: “ + mailto$ + cr, buff%()
WEB-TCP-CLIENT-ANFRAGE „DATA” + cr, buff%()
PAUSE 300
WEB-TCP-CLIENT-ANFRAGE body$, buff%()
PAUSE 300
WEB TCP-CLIENT SCHLIESSEN
WENN LINSTR(buff%(), „250 OK”) = 0 DANN
 PRINT „E-Mail-Versand fehlgeschlagen”
Sonst
 Drucken „E-Mail erfolgreich gesendet“
EndIf

Beachte, dass die im obigen Programm verwendete E-Mail-Adresse mailfrom$ genau die gleiche sein muss
wie die, die du bei der Registrierung des verifizierten Absenders bei SMTP2GO angegeben hast. Wenn sie
nicht übereinstimmen, lehnt SMTP2GO die E-Mail ab (dies ist eine Anti-Spam-Maßnahme).

Heutzutage ist die Nutzung eines SMTP-Relay-Dienstes kompliziert, weil die SMTP-Protokolle der
verschiedenen Anbieter unterschiedlich sind und es viele Schutzmaßnahmen gegen Spam gibt. Dieses Beispiel
bezieht sich speziell auf das SMTP-Protokoll von SMTP2GO, aber du kannst auch andere Dienste nutzen.
Dazu musst du das Programm aber an deren SMTP-Protokoll anpassen.

Seite100 PicoMite-Benutzerhandbuch

https://www.base64encode.org/
https://www.smtp2go.com/

Base 64-Kodierung
Base64 ist ein System zur Umwandlung von Binärdaten in eine Textzeichenfolge, die nur ASCII-Zeichen
verwendet (d. h. es gibt keine Steuerzeichen). Es wurde entwickelt, um das Senden von Binärdaten über das
Internet mit Protokollen zu vereinfachen, die keine Binärdaten akzeptieren, und viele Protokolle erfordern seine
Verwendung.

Die MATH BASE64-Kodierungs-/Dekodierungsfunktion übernimmt die Kodierung und Dekodierung für dich
(die vollständige Syntax findest du in der detaillierten Funktionsliste). Eine typische Anwendung ist das oben
genannte Programm zum Versenden von E-Mails. Anstatt einen externen Dienst zu verwenden, um den
Benutzernamen und das Passwort in Base64 zu konvertieren, kannst du dies im Programm mit dieser Funktion
tun.

Zum Beispiel:
DIM n, userBase64$, paswdBase64$
CONST user$ = "MyUserName" ' Benutzername im Klartext
CONST paswd$ = "MyPassword" ' Passwort im Klartext
...
' Benutzernamen und Passwort verschlüsseln
n = MATH(BASE64 ENCODE, user$, userBase64$)
n = MATH(BASE64 ENCODE, paswd$, paswdBase64$)
...

MQTT-Client
MQTT ist ein Protokoll, mit dem Clients wie WebMite Nachrichten auf einem Server (auch MQTT-Broker
genannt) posten oder abrufen können. Das ist so ähnlich wie ein Schwarzes Brett oder ein Webforum, wo Leute
Nachrichten posten, die andere später lesen können – der Hauptunterschied ist, dass MQTT für die
Kommunikation zwischen Maschinen gedacht ist.

Ein typisches Beispiel wäre ein batteriebetriebenes WebMite, das den Wasserstand in einem Stausee
überwacht. Zweimal täglich würde es sich einschalten, die Messung durchführen, das Ergebnis an einen
MQTT-Broker senden und sich wieder ausschalten. Ein Client-Programm (vielleicht auf einem PC) könnte
diese Nachrichten später lesen, die Ergebnisse anzeigen und grafisch darstellen.

Es gibt viele kostenlose Broker, such einfach bei Google nach „kostenloser MQTT-Broker”.

Der WebMite nutzt fünf Befehle, um Nachrichten zu senden oder abzurufen:
WEB MQTT CONNECT Verbindung zu einem MQTT-Broker herstellen.

WEB MQTT PUBLISH Veröffentliche Inhalte in einem MQTT-Thema (d. h. poste
eine Nachricht).

WEB MQTT SUBSCRIBE Abonniere ein MQTT-Thema (also hol dir
Nachrichten).

WEB MQTT UNSUBSCRIBE Ein MQTT-Thema abbestellen.

WEB MQTT CLOSE Schließ die MQTT-Verbindung.

Ping
Das WebMite antwortet auf eine Ping-Nachricht, sodass du überprüfen kannst, ob es aktiv und erreichbar ist.
Wenn es mit dem öffentlichen Internet verbunden ist, kannst du einen kostenlosen Dienst wie
https://uptimerobot.com/ nutzen, der dich benachrichtigt, wenn es nicht mehr läuft.

Audio-Streaming
Mit den Befehlen WEB OPEN TCP STREAM und WEB TCP CLIENT STREAM kannst du zusammen mit
dem Befehl PLAY STREAM ganz einfach eine grundlegende Internetradiofunktion einrichten. Das zeigt der
Code unten, der das britische Programm ClassicFM empfängt. Hinweis: Für dieses Programm brauchst du
einen VS1053-Audio-Codec.

Option escape
Option default none
' Anfrage für die Radioseite (ClassicFM) erstellen
Dim a$="ice-the.musicradio.com"
Dim q$="GET "
Inc q$,"/ClassicFMMP3"
Inc q$," HTTP/1.1\r\n"
Inc q$,"Host: "
Inc q$,a$

PicoMite Benutzerhandbuch Seite 101

https://uptimerobot.com/
https://uptimerobot.com/

Inc q$,"\r\nVerbindung: schließen\r\n\r\n"

'Erstelle einen Ringpuffer zum Lesen des Internet-Streams und
'Lese- und Schreibzeiger
Dim buff%(4095),w%,r%

' VS1053 einrichten und sagen, dass er aus dem Ringpuffer abspielen soll
Stream abspielen buff%(), r%, w%

' Internetradio-Website öffnen
WEB open tcp stream a$,80

' Anfrage zum Starten des Streams über den angegebenen Ringpuffer senden
WEB TCP CLIENT STREAM q$, buff%(), r%, w%

'Lehn dich zurück und hör zu
Do : Pause 500: Loop

Seite102 PicoMite-Benutzerhandbuch

Lange Zeichenfolgen

Lange Zeichenfolgen sind eine Reihe von Befehlen und Funktionen, mit denen MMBasic Zeichenfolgen
unbegrenzter Länge bearbeiten kann. Sie sind besonders nützlich, wenn es um Daten geht, die über WLAN und
das Internet gesendet werden. Standardzeichenfolgen in MMBasic sind auf eine maximale Länge von 255
Zeichen begrenzt. Lange Zeichenfolgen duplizieren diese Funktionen, funktionieren aber mit Zeichenfolgen
beliebiger Länge, die nur durch die verfügbare RAM-Kapazität begrenzt sind.

Lange Zeichenfolgenvariablen
Variablen zum Speichern langer Zeichenfolgen müssen als Integer-Arrays definiert werden. Die Routinen für
lange Zeichenfolgen speichern keine Zahlen in diesen Arrays, sondern verwenden sie nur als Speicherblöcke
zum Speichern langer Zeichenfolgen.

Beim Erstellen dieser Arrays sollten sie als eindimensionale Integer-Arrays definiert werden, wobei die Anzahl
der Elemente auf die Anzahl der Zeichen festgelegt wird, die für die maximale Zeichenfolgenlänge erforderlich
sind, geteilt durch acht. Der Grund für die Division durch acht ist, dass jede Ganzzahl in einem MMBasic-
Array acht Bytes belegt.

Hier ist ein Beispiel für die Deklaration von drei Variablen für lange Zeichenfolgen, die jeweils bis zu 2048
Zeichen speichern können:

CONST MaxLen = 2048
DIM INTEGER Str1(MaxLen/8), Str2(MaxLen/8), Str3(MaxLen/8)

Diese enthalten bei ihrer Erstellung leere Zeichenfolgen (d. h. ihre Länge ist Null). Wenn diese Variablen an
die Funktionen für lange Zeichenfolgen übergeben werden, sollten sie als Variablenname gefolgt von leeren
Klammern eingegeben werden. Beispiel:

LONGSTRING COPY Str1(), Str2()

Lange Zeichenfolgenvariablen können als Argumente an benutzerdefinierte Unterprogramme und Funktionen
übergeben werden. Zum Beispiel:

Sub MySub longarg() AS INTEGER
 PRINT „Die Länge der langen Zeichenfolge beträgt“ LLEN(longarg())
END SUB

Und so könnte man sie aufrufen:
MySub str1()

Befehle für lange Zeichenfolgen
Diese sind ausführlich in den Abschnitten „ -Befehle und -Funktionen” und „ ” dieses Handbuchs beschrieben.
Die Befehle lauten:

LONGSTRING AES128 ENCRYPT/DECRYPT Verschlüsselt oder entschlüsselt eine lange
Zeichenfolge
LONGSTRING APPEND array%(), string$ Fügt eine normale Zeichenfolge an eine lange
Zeichenfolge an
LONGSTRING BASE64 ENCODE/DECODE Kodiert oder dekodiert eine lange Zeichenfolge mit
Base 64
LONGSTRING CLEAR array%() Löscht (d. h. setzt auf leer) eine lange Zeichenkette
LONGSTRING COPY dest%(), src%() Kopiert eine lange Zeichenfolge
LONGSTRING CONCAT dest%(), src%() Zwei lange Zeichenfolgen zusammenfügen
LONGSTRING LCASE array%() Lange Zeichenfolge in Kleinbuchstaben umwandeln
LONGSTRING LEFT dest%(), src%(), nbr Nimm die ersten nbr Zeichen aus einer langen
Zeichenkette
LONGSTRING LOAD array%(), nbr, string$ Zeichen in eine lange Zeichenfolge kopieren
LONGSTRING MID dest%(), src%(), start, nbr Hol dir Zeichen aus der Mitte einer langen
Zeichenkette
LONGSTRING PRINT [#n,] src%() [;] Druckt eine lange Zeichenkette
LONGSTRING REPLACE array%() , string$, start Zeichen in einer langen Zeichenfolge ersetzen
LONGSTRING RESIZE addr%(), nbr Länge einer langen Zeichenkette festlegen
LONGSTRING RIGHT dest%(), src%(), nbr Die angegebene Anzahl von Zeichen aus einer langen
Zeichenfolge holen

PicoMite Benutzerhandbuch Seite 103

LONGSTRING SETBYTE addr%(), nbr, data Ein Byte in einer langen Zeichenkette setzen
LONGSTRING TRIM array%(), nbr Zeichen am Anfang einer langen Zeichenfolge
entfernen
LONGSTRING UCASE array%() Lange Zeichenfolge in Großbuchstaben umwandeln
LMID(array%(),start [,num])=string$ Text in eine lange Zeichenfolge einfügen/ersetzen

Funktionen für lange Zeichenfolgen
r = LGETBYTE(array%(), n) Gibt den Wert eines Bytes in einer langen
Zeichenfolge zurück
r$ = LGETSTR$(array%(), start, length) Gibt einen Teil eines langen Strings als normalen
String zurück.
r = LINSTR(array%(), search$ [,start] [,size]) Gibt die Position einer Zeichenfolge in einer langen
Zeichenfolge zurück
r = LLEN(array%()) Gibt die Länge einer langen Zeichenfolge zurück.
r= LINPUT(array%(),fnbr,nbr) Liest nbr Bytes aus einer Datei und gibt die Anzahl
der gelesenen Bytes zurück
MATH(BASE64 ENCODE/DECODE) Kodiert oder dekodiert Daten mit Base 64

Seite104 PicoMite-Benutzerhandbuch

MMBasic-Eigenschaften
Namenskonventionen
Bei Befehlsnamen, Funktionsnamen, Bezeichnungen, Variablennamen usw. wird nicht zwischen Groß- und
Kleinschreibung unterschieden, sodass „Run” und „RUN” dasselbe bedeuten und „dOO” und „Doo” sich auf
dieselbe Variable beziehen.

Der Typ einer Variablen kann im DIM-Befehl oder durch Hinzufügen eines Suffixes am Ende des
Variablennamens angegeben werden. Das Suffix für eine Ganzzahl ist beispielsweise „%“, sodass eine
automatisch erstellte Variable namens nbr% eine Ganzzahl ist. Es gibt drei Arten von Variablen:

1. Gleitkomma. Diese können eine Zahl mit Dezimalpunkt und Bruchteil (z. B. 45,386) sowie sehr große
Zahlen speichern. Allerdings verlieren sie an Genauigkeit, wenn mehr als 14 signifikante Stellen
gespeichert oder bearbeitet werden. Das Suffix ist „!” und Gleitkomma ist die Standardeinstellung,
wenn eine Variable ohne Suffix erstellt wird.

2. 64-Bit-Ganzzahl. Diese können Zahlen mit bis zu 19 Dezimalstellen ohne Genauigkeitsverlust
speichern, aber keine Bruchteile (d. h. den Teil nach dem Dezimalpunkt). Das Suffix für eine
Ganzzahl ist „%”.

3. Zeichenfolgen. Diese speichern eine Folge von Zeichen (z. B. „Tom”). Das Suffix für eine
Zeichenfolge ist das Symbol „$” (z. B. name$, s$ usw.). Zeichenfolgen können bis zu 255 Zeichen
lang sein.

Variablennamen und Bezeichnungen können mit einem Buchstaben oder einem Unterstrich beginnen und
beliebige Buchstaben oder Zahlen, den Punkt (.) und den Unterstrich (_) enthalten. Sie können bis zu 31
Zeichen lang sein. Ein Variablenname oder eine Bezeichnung darf nicht mit einem Befehl oder einer Funktion
oder einem der folgenden Schlüsselwörter übereinstimmen: THEN, ELSE, TO, STEP, FOR, WHILE, UNTIL,
MOD, NOT, AND, OR, XOR, AS. Beispielsweise ist step = 5 nicht zulässig.

Infos zu Dateinamen findest du im Abschnitt „MMBasic-Unterstützung für Flash- und SD-Karten-
Dateisysteme“.

Konstanten
Numerische Konstanten können mit einer Ziffer (0-9) für eine Dezimalkonstante, mit &H für eine
Hexadezimalzahl, mit &O für eine Oktalzahl oder mit &B für eine Binärzahl anfangen. Zum Beispiel ist
&B1000 dasselbe wie die Dezimalkonstante 8. Konstanten, die mit &H, &O oder &B anfangen, werden immer
als 64-Bit-Ganzzahlkonstanten behandelt.

Dezimalen können mit einem Minuszeichen (-) oder Pluszeichen (+) beginnen und mit „E” gefolgt von einer
Exponentialzahl enden, um die Exponentialdarstellung anzuzeigen. Zum Beispiel ist 1,6E+4 dasselbe wie
16000. Wenn die Dezimalzahl einen Dezimalpunkt oder einen Exponenten enthält, wird sie als
Gleitkommazahl behandelt, sonst als 64-Bit-Ganzzahl.

Zeichenfolgenkonstanten werden in doppelte Anführungszeichen (") gesetzt. Beispiel: „Hello World”.

Implementierungsmerkmale
Maximales Programm – siehe Tabelle. Beachte, dass MMBasic das Programm beim Speichern im Flash-
Speicher in Tokens zerlegt, sodass die endgültige Größe im Flash-Speicher von der Größe des Klartexts
abweichen kann.
Die maximale Länge einer Befehlszeile beträgt 255 Zeichen.
Die maximale Länge eines Variablennamens oder einer Bezeichnung beträgt 31 Zeichen.
Maximale Anzahl von Dimensionen – siehe Tabelle.
Die maximale Anzahl von Argumenten für Befehle, die eine variable Anzahl von Argumenten akzeptieren,
beträgt 50.
Die maximale Anzahl verschachtelter FOR…NEXT-Schleifen beträgt 20.
Die maximale Anzahl verschachtelter DO…LOOP-Befehle beträgt 20.
Die maximale Anzahl verschachtelter GOSUBs ist 50.
Die maximale Anzahl verschachtelter mehrzeiliger IF…ELSE…ENDIF-Befehle beträgt 20.
Die maximale Anzahl von benutzerdefinierten Labels, Unterprogrammen und Funktionen (zusammen) – siehe
Tabelle.
Die maximale Anzahl konfigurierbarer Interrupt-Pins beträgt 10.

PicoMite Benutzerhandbuch Seite 105

Zahlen werden als Gleitkommazahlen mit doppelter Genauigkeit oder als 64-Bit-Ganzzahlen mit Vorzeichen
gespeichert und verarbeitet. Der Bereich der Gleitkommazahlen reicht von 1,797693134862316e+308 bis
2,225073858507201e-308.
Der Bereich der 64-Bit-Ganzzahlen (ganze Zahlen), die bearbeitet werden können, ist ±
9223372036854775807.
Die maximale Zeichenfolgenlänge beträgt 255 Zeichen.
Die maximale Zeilenzahl beträgt 65000.
Die maximale Anzahl von Hintergrundimpulsen, die mit dem Befehl PULSE ausgelöst werden können, beträgt
5.
Die maximale Anzahl globaler Variablen und Konstanten findest du in der Tabelle.
Die maximale Anzahl lokaler Variablen – siehe Tabelle
Die maximale Anzahl von Dateien, die mit dem Befehl FILES aufgelistet werden können, beträgt 1000.
Die maximale Länge eines Dateinamens/Pfads beträgt 63 Zeichen (RP2040) oder 127 Zeichen (RP2350).

Eigenschaften vs. Firmware-Funktionen:

Maximale
Program
mgröße

Maximale
Frequenz

Maximale
Anzahl von
Unterprogr
ammen
oder
Funktionen

Maximale
Array-
Dimension
en

Standarda
nzahl
globaler
Variablen

Standarda
nzahl
lokaler
Variablen
*

PicoMite RP2040 132 KB 420 MHz 256 6 256 240

PicoMiteUSB RP2040 132 KB 420 MHz 256 6 256 240

PicoMiteVGA RP2040 100 KB 378 MHz 256 6 240 240

PicoMiteVGAUSB RP2040 100 KB 378 MHz 256 6 240 240

WebMite RP2040 88 KB 252 MHz 256 6 240 240

PicoMite RP2350 324 KB 396 MHz 512 5 512 240

PicoMiteUSB RP2350 324 KB 396 MHz 512 5 512 240

PicoMiteVGA RP2350 184 KB 378 MHz 512 5 480 256

PicoMiteVGAUSB RP2350 184 KB 378 MHz 512 5 480 256

PicoMiteHDMI RP2350 176 KB 372 MHz 512 5 480 256

PicoMiteHDMIUSB RP2350 176 KB 372 MHz 512 5 480 256

WebMite RP2350 204 KB 252 MHz 512 5 512 256

* Das Verhältnis zwischen globalen und lokalen Variablen kann geändert werden.
Siehe OPTION LOCAL VARIABLES und MM.INFO(MAX VARS)

Kompatibilität
MMBasic hat viele Funktionen von Microsofts GW-BASIC. Es gibt zwar ein paar Unterschiede, die aus
technischen und praktischen Gründen gemacht wurden, aber die meisten Standard-BASIC-Befehle und -
Funktionen sind im Grunde gleich. Ein Online-Handbuch für GW-BASIC findest du unter
http://www.antonis.de/qbebooks/gwbasman/index.html. Dort gibt's eine ausführlichere Beschreibung der
Befehle und Funktionen.

MMBasic hat auch einige moderne Programmierstrukturen, die im ANSI-Standard für Full BASIC (X3.113-
1987) oder ISO/IEC 10279:1991 dokumentiert sind. Dazu gehören SUB/END SUB, DO WHILE … LOOP,
SELECT…CASE-Anweisungen und strukturierte IF . THEN … ELSE … ENDIF-Anweisungen.

Seite106 PicoMite-Benutzerhandbuch

http://www.antonis.de/qbebooks/gwbasman/index.html
http://www.antonis.de/qbebooks/gwbasman/index.html

Vordefinierte schreibgeschützte Variablen
Detaillierte Auflistung
Diese Variablen werden von MMBasic festgelegt und können vom laufenden Programm nicht geändert werden.
Beachte, dass sie selbst keine Funktion haben, sondern ausgegeben oder einer Variablen zugewiesen werden
müssen.

Beispiel:
> PRINT MM.VER
6.0002
>

oder in einem Programm:
Wenn MM.VER < 6.0002 Dann Fehlermeldung „Version 6.00.02 oder höher
erforderlich”

MM.VER Gibt die Versionsnummer der Firmware als Fließkommazahl im Format
aa.bbcc zurück, wobei aa die Hauptversionsnummer, bb die
Nebenversionsnummer und cc die Revisionsnummer ist. Beispielsweise
würde Version 6.03.00 den Wert 6.03 und Version 6.03.01 den Wert 6.0301
zurückgeben.

MM.ADDRESS$

NUR WEBMITE-VERSION

Diese Variable gibt die IP-Adresse des Absenders des zuletzt empfangenen
UDP-Datagramms zurück.

MM.CMDLINE$ Diese Funktion gibt alle Befehlszeilenargumente zurück, die an das
aktuellen Programm übergeben wurden, wenn ein MMBasic-Programm
läuft.
Details findest du unter den Befehlen RUN und *.
Die Funktion gibt eine leere Zeichenfolge zurück, wenn Programme aus
dem Editor oder mit der Option AUTORUN ausgeführt werden.

MM.DEVICE$ Eine Zeichenkette, die das Gerät oder die Plattform angibt, auf der MMBasic
läuft.

MM.DISPLAY Gibt 1 zurück, wenn ein physisches Display konfiguriert ist, sonst 0.

MM.ERRNO

MM.ERRMSG$

Wenn eine Anweisung einen Fehler verursacht hat, der ignoriert wurde,
werden diese Variablen entsprechend gesetzt. MM.ERRNO ist eine Zahl,
wobei ein Wert ungleich Null bedeutet, dass ein Fehler aufgetreten ist, und
MM.ERRMSG$ ist eine Zeichenfolge, die die Fehlermeldung darstellt, die
normalerweise auf der Konsole angezeigt worden wäre. Sie werden durch
RUN, ON ERROR IGNORE oder ON ERROR SKIP auf Null und eine leere
Zeichenfolge zurückgesetzt.

MM.FLAGS Gibt den Wert des Systemflags-Registers zurück

MM.FONTHEIGHT

MM.FONTWIDTH

Gibt die Höhe oder Breite der aktuellen Schriftart in Pixeln zurück

MM.HRES

MM.VRES

Ganzzahlen, die die aktuelle horizontale und vertikale Auflösung des
VGA/HDMI-Videoausgangs oder des LCD-Bildschirms (falls konfiguriert)
in Pixeln angeben.

MM.HEIGHT

MM.WIDTH

Gibt die Anzahl der Zeichen über die physische Anzeige mit der aktuellen
Schriftart oder die Anzahl der Zeichen unter der Anzeige mit der aktuellen
Schriftart zurück.

PicoMite Benutzerhandbuch Seite 107

MM.HPOS

MM.VPOS

Gibt die aktuelle horizontale und vertikale Position (in Pixeln) nach dem
letzten Grafik- oder Druckbefehl zurück.

MM.SUPPLY Bei Modulen mit einem Pin zur Messung der Eingangsspannung
wie Pico und Pico2 gibt MM.SUPPLY die Spannung zurück.

MM.INFO()

MM.INFO$()

Diese beiden Versionen können austauschbar verwendet werden, aber für
eine gute Programmierpraxis solltest du diejenige verwenden, die dem
zurückgegebenen Datentyp entspricht.

MM.INFO$(AUTORUN)

MM.INFO(ADC)

MM.INFO(ADC DMA)

MM.INFO(BOOT)

MM.INFO(BOOT COUNT)

MM.INFO$(CALLTABLE)

MM.INFO$(CPUSPEED)

MM.INFO$(LCDPANEL)

MM.INFO(LCD320)

Gibt die Einstellung des Befehls OPTION AUTORUN zurück

Gibt die Nummer des Puffers zurück, der gerade zum Lesen bereit ist, wenn
ADC RUN (1 oder 2) verwendet wird. Gibt 0 zurück, wenn nichts bereit ist.

Gibt „true” (1) zurück, wenn ADC DMA aktiv ist.

Zeigt den Grund für den letzten Neustart des Pico an
Gibt Folgendes zurück:
Neustart – Das Gerät wurde mit CPU RESTART oder einem OPTION-
Befehl neu gestartet.
S/W Watchdog – Das Gerät wurde durch einen Software-Watchdog-Timeout
neu gestartet.
H/W Watchdog – Das Gerät wurde durch einen Hardware-Watchdog-
Timeout neu gestartet.
Firmware-Update – Das Gerät wurde nach einem Firmware-Update neu
gestartet
Einschalten – Das Gerät wurde eingeschaltet
Reset-Schalter – Das Gerät wurde mit dem Reset-Schalter neu gestartet.
Unbekannter Code &Hn – unbekannter Grund – bitte gib den Code und die
Version an RP2040/2350

Gibt an, wie oft der Pico seit der letzten Formatierung des Flash-Laufwerks
neu gestartet wurde.

Gibt die Basisadresse der MMBasic-Aufruftabelle zurück, die Zeiger auf
jede MMBasic-Funktion enthält.

Gibt die CPU-Geschwindigkeit als Zeichenfolge zurück.

Gibt den Namen des konfigurierten LCD-Panels oder eine leere
Zeichenfolge zurück.

Gibt „true“ zurück, wenn das Display mit dem Befehl OPTION LCD320 für
eine Auflösung von 320 x 240 geeignet ist

MM.INFO$(SDCARD) Gibt den Status der SD-Karte zurück. Gültige Rückgabewerte sind:
DISABLED, NOT PRESENT, READY und UNUSED

MM.INFO$(CURRENT)

MM.INFO$(PATH)

MM.INFO(DISK SIZE)

MM.INFO$(DRIVE)

Gibt den Namen des aktuellen Programms zurück, wenn es aus einer Datei
geladen wurde, oder NONE, wenn es nach einem NEW-, AUTOSAVE-,
XMODEM- oder EDIT-Befehl aufgerufen wird.

Gibt den Pfad des aktuellen Programms zurück oder NONE, wenn der
Befehl nach einem NEW- oder EDIT-Befehl aufgerufen wird.

Gibt die Kapazität des Flash-Dateisystems oder der SD-Karte, je nachdem,
welches Laufwerk gerade aktiv ist, in Byte zurück.

Sagt dir, welches Laufwerk gerade aktiv ist: „A:“ oder „B:“.

Seite108 PicoMite-Benutzerhandbuch

MM.INFO(DATEI
EXISTIERT fname$)

MM.INFO(EXISTS DIR
Verzeichnisname$)

MM.INFO(FREIER
SPEICHERPLATZ)

Gibt 1 zurück, wenn die angegebene Datei existiert, gibt -1 zurück, wenn
fname$ ein Verzeichnis ist, ansonsten gibt es 0 zurück.

Gibt einen booleschen Wert zurück, der angibt, ob das angegebene
Verzeichnis existiert.

Gibt den freien Speicherplatz auf dem Flash-Dateisystem oder der SD-Karte
zurück, je nachdem, welches Laufwerk gerade aktiv ist.

MM.INFO(FILESIZE file$)

MM.INFO$(MODIFIED file$)

Gibt die Größe von file$ in Bytes zurück oder 0, wenn die Datei nicht
gefunden wird.

Sagt dir, wann die Datei file$ geändert wurde, oder gibt eine leere
Zeichenfolge zurück, wenn sie nicht gefunden wird.

MM.INFO$(SYSTEM I2C)

MM.INFO(FCOLOUR)

MM.INFO(BCOLOUR)

Gibt „I2C“, „I2C2“ oder „Nicht festgelegt“ zurück, je nach Status von
OPTION SYSTEM I2C

Gibt die aktuelle Vordergrundfarbe zurück.

Gibt die aktuelle Hintergrundfarbe zurück.

MM.INFO(FONT)

MM.INFO(FONT ADDRESS
n)

MM.INFO(FONT POINTER n)

Gibt die Nummer der gerade aktiven Schriftart zurück.

Gibt die Adresse des Speicherplatzes mit der Adresse von FONT n zurück.

Gibt einen ZEIGER auf den Anfang von FONT n im Speicher zurück.

MM.INFO(FONTHEIGHT)
MM.INFO(FONTWIDTH)

MM.INFO(FLASH)

Ganzzahlen, die die Höhe und Breite der aktuellen Schriftart (in Pixeln)
angeben.

Sagt dir, aus welchem Flash-Slot das Programm geladen wurde, falls das
möglich ist.

MM.INFO(FLASH ADDRESS
n)

MM.INFO(HEAP)

MM.INFO(HPOS)
MM.INFO(VPOS)

MM.INFO(ID)

MM.INFO$(IP-ADRESSE)

MM.INFO(MAX GP)

MM.INFO(MAX VARS)

MM.INFO$(MODBUFF-
ADRESSE)

MM.INFO$(OPTION Option)

Gibt die Adresse des Flash-Steckplatzes n zurück.

Gibt die Menge an freiem MMbasic-Heap-Speicher zurück. Der MMBasic-
Heap wird für Zeichenfolgen, Arrays und verschiedene andere temporäre
und permanente Puffer (z. B. Audio) verwendet.

Die aktuelle horizontale und vertikale Position (in Pixeln) nach dem letzten
Grafik- oder Druckbefehl.

Gibt die eindeutige ID des Pico zurück.

Gibt die IP-Adresse des WebMite zurück.

Gibt die höchste gültige GPno auf dem Chip zurück.

Gibt die Gesamtzahl der in der aktuellen Version verfügbaren Variablen
zurück

Gibt die Adresse im Speicher des Puffers zurück, der zum Speichern von
MOD-Dateien verwendet wird.

PicoMite Benutzerhandbuch Seite 109

Gibt den aktuellen Wert einer Reihe von Optionen zurück, die beeinflussen,
wie ein Programm
ausgeführt wird. „option” kann einer der folgenden Werte sein: AUTORUN,
AUDIO, BASE, BREAK,
CONSOLE, DEFAULT, EXPLICIT, KEYBOARD, ANGLE, HEIGHT,
WIDTH, FLASH SIZE

MM.INFO$(PIN pinno) Gibt den Status des E/A-Pins „pinno“ zurück. Gültige Rückgabewerte sind:
OFF, DIN, DOUT, AIN usw.

MM.INFO(PINNO GPnn)

MM.INFO(PIO RX DMA)

MM.INFO(PIO TX DMA)

Gibt die physikalische Pin-Nummer für eine bestimmte GP-Nummer zurück.
GPnn kann eine Zeichenfolge ohne Anführungszeichen (GP01), eine
Zeichenfolgenliteral („GP01“) oder eine Zeichenfolgenvariable sein. D. h.
A$ = „GP01“: MM.INFO(PINNO A$).

Zeigt an, ob der PIO RX DMA-Kanal beschäftigt ist

Zeigt an, ob der PIO TX DMA-Kanal gerade beschäftigt ist

MM.INFO$(PLATTFORM)

MM.INFO(PROGRAMM)

MM.INFO(PS2)

MM.INFO(PWM-ZÄHLER)

MM.INFO(PWM-
EINSCHALTDauer C%, n%)

MM.INFO$(SOUND)

MM.INFO(SPI-
GESCHWINDIGKEIT

MM.INFO(STACK)

MM.INFO$(SYSTEM I2C)

MM.INFO(SYSTEM-HEAP)

MM.INFO(SYSTICK)

MM.INFO(FLIESENHÖHE)

MM.INFO(SPUR)

MM.INFO$(TOUCH)

MM.INFO(USB n)

Gibt die zuvor mit OPTION PLATFORM festgelegte Zeichenfolge zurück.

Gibt die Adresse im Speicher des aktuell laufenden Programms zurück.

Zeigt die letzte Rohmeldung an, die über die PS2-Schnittstelle empfangen
wurde, wenn diese aktiviert ist.

Gibt die Anzahl der vom Chip unterstützten PWM-Kanäle zurück.

Gibt den aktuellen Arbeitszyklus in Taktzahlen des PWM-Kanals C%, N%
zurück.
Dabei ist N%=0 für A und 1 für B.

Gibt die aktuelle Aktivität am Audioausgang zurück (AUS, PAUSE, TON,
WAV, FLAC, MP3, SOUND)

Gibt die tatsächliche Geschwindigkeit des SYSTEM SPI zurück oder einen
Fehler, wenn nicht eingestellt

Gibt den C-Stack-Zeiger zurück. Komplexer oder rekursiver Basic-Code
kann zu dem Fehler „Stack overflow, expression too complex at depth %”
führen. Das passiert, wenn der Stack unter &H 2003f800 liegt. Durch
Überwachen des Stacks kann der Programmierer Vereinfachungen des
Basic-Codes identifizieren, um den Fehler zu vermeiden.

Gibt I2C, I2C2 oder NOT SET zurück, je nach Anwendbarkeit.

Gibt den freien Speicherplatz auf dem System-Heap zurück.

Gibt den aktuellen Wert des 24-Bit-Systick-Timers des Systems zurück, der
mit der CPU-Taktrate läuft.

NUR VGA- UND HDMI-VERSIONEN
Gibt die aktuelle Einstellung der Kachelhöhe zurück.

Gibt den Namen der FLAC-, MP3-, WAV- oder MIDI-Datei zurück, die
gerade über den Audioausgang abgespielt wird.

Zeigt den Status des Touch-Controllers an. Mögliche Werte sind:
„Deaktiviert“, „Nicht kalibriert“ und „Bereit“.

Seite110 PicoMite-Benutzerhandbuch

MM.INFO(USB-VID n)

MM.INFO(USB-PID n)

MM.INFO(VARCNT)

MM.INFO$(LINE)

MM.INFO(UPTIME)

MM.INFO(GÜLTIGE
CPUSPEED-Geschwindigkeit
%)

MM.INFO(VERSION)

MM.INFO(WRITEBUFF)

Gibt den Gerätecode für jedes an Kanal „n“ angeschlossene Gerät zurück,
der eine Zahl zwischen 1 und 4 ist. Der zurückgegebene Gerätecode kann
sein:
0 = nicht in Gebrauch, 1 = Tastatur, 2 = Maus, 128 = PS4, 129 = PS3, 130 =
SNES/Generisch
Standardmäßig wird eine angeschlossene Tastatur dem Kanal 1 zugewiesen,
eine Maus dem Kanal 2 und Gamepads dem Kanal 3 und dann dem Kanal 4.
Wenn zwei oder mehr Tastaturen oder Mäuse angeschlossen sind oder drei
oder mehr Gamepads, werden die zusätzlichen Geräte dem höchsten
verfügbaren Kanal zugewiesen.

Gibt die VID des USB-Geräts auf Kanal n zurück

Gibt die PID des USB-Geräts auf Kanal n zurück

Gibt die Anzahl der im MMBasic-Programm verwendeten Variablen zurück.

Gibt die aktuelle Zeilennummer als Zeichenfolge zurück. LIBRARY wird
zurückgegeben, wenn es sich in der Bibliothek befindet, und UNKNOWN,
wenn es nicht in einem Programm ist. Hilft bei der Diagnose während der
Komponententests.

Gibt die Zeit seit dem Start in Sekunden als Fließkommazahl zurück.

Gibt 1 zurück, wenn „speed%” für OPTION CPUSPEED „speed%” gültig
ist

Die Versionsnummer der Firmware (MM.VER konvertiert in diese).

Gibt die Adresse im Speicher des aktuellen Puffers zurück, der für
Zeichenbefehle verwendet wird.

MM.INFO(TCP PORT)

MM.INFO(UDP-PORT)

NUR WEBMITE

Gibt den als Server eingestellten TCP-Port zurück oder 0, wenn keiner
eingestellt ist

Gibt den als Server eingestellten UDP-Port zurück oder 0, wenn keiner
eingestellt ist.

MM.INFO(TCPIP-STATUS)

MM.INFO(WIFI-STATUS)

NUR WEBMITE

Gibt den TCPIP-Status der Verbindung zurück

Gibt den WIFI-Status der Verbindung zurück.

Gültige Rückgaben sind:
 0 WLAN ist ausgefallen
 1 Mit WLAN verbunden
 2 Mit WLAN verbunden, aber keine IP-Adresse (nur TCPIP

STATUS)
 3 Mit WLAN verbunden und hat eine IP-Adresse (nur TCPIP-

STATUS)
-1 Verbindung ist fehlgeschlagen
-2 Keine passende SSID gefunden (könnte außerhalb der

Reichweite oder nicht verfügbar sein)
-3 Authentifizierung fehlgeschlagen

MM.MESSAGE$ NUR WEBMITE
Gibt den Inhalt des zuletzt empfangenen UDP-Datagramms oder des zuletzt
empfangenen MQTT-Pakets zurück

PicoMite Benutzerhandbuch Seite 111

MM.TOPIC$ Nur WEBMITE
Gibt das Thema des zuletzt empfangenen MQTT-Pakets zurück

MM.ADDRESS$ Nur WEBMITE
Gibt die Adresse des Absenders des zuletzt empfangenen UDP-Datagramms
oder des zuletzt empfangenen MQTT-Pakets zurück

MM.ONEWIRE Nach einer 1-Wire-Reset-Funktion wird diese ganzzahlige Variable gesetzt,
um das Ergebnis der Operation anzuzeigen: 0 = Gerät nicht gefunden, 1 =
Gerät gefunden, 2 = Zeitüberschreitung beim Gerät.

MM.I2C Nach einem I2C-Schreib- oder Lesebefehl wird diese Ganzzahlvariable
gesetzt, um das Ergebnis der Operation wie folgt anzuzeigen:

0 = Der Befehl wurde ohne Fehler ausgeführt.

1 = NACK-Antwort erhalten

2 = Befehl abgelaufen

MM.PERSISTENT Gibt einen Wert zurück, der mit dem Befehl SAVE PERSISTENT
gespeichert wurde.

MM.PS2 Gibt den letzten Code zurück, der über die PS2-Schnittstelle empfangen
wurde, wenn diese aktiviert ist.

MM.WATCHDOG Eine ganze Zahl, die wahr ist, wenn MMBasic aufgrund eines Watchdog-
Timeouts neu gestartet wurde (siehe Befehl WATCHDOG), andernfalls
falsch.

Seite112 PicoMite-Benutzerhandbuch

Optionen
Detaillierte Auflistung
Diese Tabelle listet die verschiedenen Optionsbefehle auf, mit denen MMBasic konfiguriert und seine
Funktionsweise geändert werden kann. Optionen, die als dauerhaft gekennzeichnet sind, werden in einem
nichtflüchtigen Speicher gespeichert und beim Neustart der PicoMite-Firmware automatisch wiederhergestellt.
Optionen, die nicht dauerhaft sind, werden beim Start, beim Zurücksetzen und in vielen Fällen beim Ausführen
und/oder Beenden eines Programms zurückgesetzt.

Viele OPTION-Befehle erzwingen einen Neustart der PicoMite-Firmware, wodurch die USB-
Konsolenschnittstelle zurückgesetzt wird. Das Programm im Speicher geht nicht verloren, da es in einem
nichtflüchtigen Flash-Speicher gespeichert ist.

Permanent?

OPTION WINKEL RADIANE
| GRAD

Dieser Befehl wechselt die trigonometrischen Funktionen zwischen Grad
und Radiant um. Gilt für SIN, COS, TAN, ATN, ATAN2, MATH
ATAN3, ACOS, ASIN

OPTION AUDIO PWMnApin,
PWMnBpin

oder

OPTION AUDIO DISABLE

 Konfiguriert einen der PWM-Kanäle als Audioausgang.

„PWMnApin” ist der linke Audiokanal, „PWMnBpin” der rechte. Beide
Pins müssen zum selben Audiokanal gehören.

Beispiel: OPTION AUDIO GP18, GP19 würde PWM1A und PWM1B
an den Pins 24 und 25 verwenden.

Diese Option verhindert die Verwendung dieser Pins im BASIC-
Programm.

Der Audioausgang wird mit PWM erzeugt, daher ist ein Tiefpassfilter
am Ausgang nötig. Der Audioausgang des Raspberry Pi Pico ist
ziemlich verrauscht. Mit OPTION POWER und/oder einer
Stromversorgung über einen separaten 3,3-V-Linearregler kann man das
reduzieren.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION AUDIO SPI CSpin,
CLKpin, MOSIpin

oder

OPTION AUDIO DISABLE

 Konfiguriert den Audioausgang so, dass er an einen MCP48n2-DAC
geleitet wird, der an die angegebenen Pins angeschlossen ist. Der
LDAC-Pin am DAC sollte mit GND verbunden werden.

OPTION AUDIO VS1053
CLKpin, MOSIpin, MISOpin,
XCSpin, XDCSpin, DREQpin,
XRSTpin

oder

OPTION AUDIO DISABLE

 Konfiguriert den Audioausgang so, dass er an einen VS1053-CODEC
weitergeleitet wird. Damit kannst du neben den anderen unterstützten
Formaten auch MP3- und MIDI-Dateien abspielen und es wird auch die
Echtzeit-MIDI-Ausgabe unterstützt. Weitere Infos findest du unter dem
Befehl PLAY.

OPTION AUDIO I2S
BCLKpin, DINpin

oder

OPTION AUDIO DISABLE

 Konfiguriert den Audioausgang so, dass er an einen I2S-DAC
weitergeleitet wird, der an die angegebenen Pins angeschlossen ist. Der
LRCK-Pin am DAC sollte mit dem nächsten aufeinanderfolgenden
GPIO-Pin zu BCLKpin verbunden werden.

PicoMite Benutzerhandbuch Seite 113

OPTION AUTOREFRESH
OFF | ON

Schwarz-Weiß-Displays können nur bildschirmweise aktualisiert
werden. Mit OPTION AUTOREFRESH OFF/ON kannst du steuern, ob
ein Schreibbefehl das Display sofort aktualisiert oder nicht. Wenn
AUTOREFRESH auf OFF steht, kann der Befehl REFRESH zum
Auslösen des Schreibvorgangs verwendet werden. Dies gilt für die
folgenden Displays: N5110, SSD1306I2C, SSD1306I2C32,
SSD1306SPI und ST7920

OPTION AUTORUN ON
[,NORESET]

oder

OPTION AUTORUN n
[,NORESET]

oder

OPTION AUTORUN OFF

 Sagt MMBasic, dass es beim Einschalten oder Neustart automatisch ein
Programm starten soll.

ON führt dazu, dass das aktuelle Programm im Programmspeicher
ausgeführt wird.

Wenn du „n“ angibst, wird der entsprechende Speicherplatz im Flash-
Speicher ausgeführt. „n“ muss zwischen 1 und 3 liegen.

Wenn du den optionalen Parameter „NORESET” angibst, bleibt
AUTORUN auch dann aktiv, wenn das Programm einen Systemfehler
verursacht (standardmäßig führt das dazu, dass die Firmware alle
OPTION AUTORUN-Einstellungen löscht).

OFF deaktiviert die Autorun-Option und ist die Standardeinstellung für
ein neues Programm.

Durch Drücken der Unterbrechungstaste (standardmäßig STRG-C) auf
der Konsole wird das laufende Programm unterbrochen und die
Eingabeaufforderung wieder angezeigt.

OPTION BASE 0 | 1 Legt den niedrigsten Wert für Array-Indizes auf entweder 0 oder 1 fest.

Dies muss vor der Deklaration von Arrays verwendet werden und wird
beim Einschalten auf den Standardwert 0 zurückgesetzt.

OPTION BAUDRATE nn Setzt die Baudrate der seriellen Konsole (falls konfiguriert).

OPTION BREAK nn Setz den Wert der Break-Taste auf den ASCII-Wert „nn”. Diese Taste wird
benutzt, um ein laufendes Programm zu unterbrechen.

Der Wert der Break-Taste wird beim Einschalten und beim Ausführen eines
Programms auf die Taste STRG-C gesetzt, kann aber mit diesem Befehl in
einem Programm auf eine beliebige Tastaturtaste geändert werden (z. B.
setzt OPTION BREAK 4 die Break-Taste auf die Taste STRG-D). Wenn
du diese Option auf Null setzt, wird die Break-Funktion komplett
deaktiviert.

OPTION CASE LOWER |
UPPER | TITLE

 Ändere die Groß-/Kleinschreibung für Befehls- und Funktionsnamen,
wenn du den Befehl LIST benutzt. Standardmäßig ist TITLE eingestellt,
aber mit OPTION CASE UPPER kannst du den alten Standard von
MMBasic wiederherstellen.

OPTION COLOURCODE ON

oder

OPTION COLOURCODE
OFF

 Aktiviert oder deaktiviert die Farbcodierung für die Ausgabe des
Editors. Schlüsselwörter werden cyanfarben, Kommentare gelb usw.
dargestellt. Die Standardeinstellung ist OFF.

Das Schlüsselwort COLORCODE (US-Schreibweise) kann ebenfalls
verwendet werden.

Das funktioniert bei VGA/HDMI-Video und der seriellen Konsole mit
einem Terminalemulator mit VT100-Emulation (z. B. Tera Term).
Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

Seite114 PicoMite-Benutzerhandbuch

OPTION CONSOLE-Ausgabe Legt fest, wo Druckanweisungen ausgegeben werden. Gültige
Einstellungen sind BOTH (d. h. SCREEN und SERIAL), SERIAL,
SCREEN, NONE. Dies ist eine temporäre Option, die beim Beenden eines
Programms zurückgesetzt wird.

OPTION CONTINUATION
LINES ON/OFF

 Aktiviert oder deaktiviert die Verwendung von Fortsetzungszeilen im
Editor und mit dem Befehl LIST. Zeilenfortsetzungen werden durch ein
Leerzeichen gefolgt von einem Unterstrich am Ende einer Zeile angezeigt.
Wenn diese Option aktiviert ist, teilt der Editor die Zeilen beim Lesen aus
der Datei automatisch und fügt die erforderlichen Fortsetzungszeichen
hinzu. Beim Beenden des Editors werden die Fortsetzungszeichen vor
dem Speichern entfernt. Im Editor kann der Benutzer lange Zeilen
erstellen, indem er eigene Fortsetzungszeichen hinzufügt. Dies erleichtert
die Verwendung eines kleinen Bildschirms als Konsole erheblich.

OPTION CPUSPEED
Geschwindigkeit


NICHT BEI HDMI- ODER VGA-VERSIONEN

Ändert die CPU-Taktrate.

„speed” ist die CPU-Taktfrequenz in KHz im Bereich von 48000 bis
396000. Geschwindigkeiten über 200 MHz (150 MHz für den RP2350)
gelten als Übertaktung, da dies die angegebene Höchstgeschwindigkeit
des Standard-Raspberry Pi Pico ist.

Die Standardgeschwindigkeit beträgt 200000 für den RP2040 und 150000
für den RP2350.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION COUNT pin1, pin2,
pin3, pin4

 Legt fest, welche Pins als Zähleingänge verwendet werden sollen.
Standardmäßig sind dies GP6, GP7, GP8 und GP9. Der Befehl SETPIN
definiert den Zählermodus.

Dieser Befehl muss an der Eingabeaufforderung ausgeführt werden (nicht
in einem Programm).

OPTION DEFAULT FLOAT |
INTEGER | STRING | NONE

Wird verwendet, um den Standardtyp für eine Variable festzulegen, die
nicht explizit definiert ist.

Wenn OPTION DEFAULT NONE verwendet wird, muss der Typ aller
Variablen explizit definiert sein, sonst kommt es zum Fehler
„Variablentyp nicht angegeben”.

Wenn ein Programm ausgeführt wird, ist der Standardwert auf FLOAT
gesetzt, um die Kompatibilität mit Microsoft BASIC und früheren
Versionen von MMBasic zu gewährleisten.

OPTION DEFAULT
COLOURS foreground
[,background]


Legt die Standardfarben für den Vordergrund und Hintergrund sowohl für
den Monochrom- als auch für den Farbmodus fest. Die Farbe muss eine
der folgenden sein: Weiß, Gelb, Lila, Braun, Fuchsia, Rostrot, Magenta,
Rot, Cyan, Grün, Cerulean, Mittelgrün, Kobalt, Myrte, Blau und Schwarz.
Ein numerischer Wert kann nicht verwendet werden. Der Standardwert ist
Weiß, Schwarz.

Wenn der Hintergrund weggelassen wird, ist er standardmäßig schwarz.

OPTION DEFAULT MODE n  Damit wird der Standardanzeigemodus beim Booten festgelegt. Dieser
Befehl muss an der Eingabeaufforderung (nicht in einem Programm)
ausgeführt werden.

OPTION DISK SAVE fname$
OPTION DISK LOAD fname

 Mit diesen Befehlen kann der Benutzer den kompletten Satz der
definierten Optionen in einer Datei speichern und wiederherstellen. Die
Datei kann dann mit XMODEM auf einen Host-Computer übertragen

PicoMite Benutzerhandbuch Seite 115

werden, sodass zusätzliche Geräte einfach konfiguriert oder Optionen
nach einem Firmware-Upgrade wiederhergestellt werden können.

OPTION DISPLAY lines
[,chars]

 Legt die Eigenschaften des für die Konsole verwendeten
Anzeigeterminals fest. Sowohl der Befehl LIST als auch der Befehl
EDIT benötigen diese Informationen, um den Text für die Anzeige
korrekt zu formatieren.
„lines“ ist die Anzahl der Zeilen auf dem Display und „chars“ ist die
Breite des Displays in Zeichen. Die Standardeinstellung ist 24 Zeilen x
80 Zeichen. Wenn du diese Option änderst, bleibt sie auch nach dem
Ausschalten gespeichert. Die Maximalwerte sind 100 Zeilen und 240
Zeichen.
Dadurch wird eine ESC-Sequenz gesendet, um das VT100-Terminal auf
die entsprechende Größe einzustellen. TerraTerm, Putty und MMCC
reagieren auf diese Sequenz und stellen die Terminalbreite ein (wenn die
Option in den Terminaleinstellungen aktiviert ist).
Diese Option ist nicht verfügbar, wenn ein LCD-Display als Konsole
verwendet wird.

OPTION ESCAPE Aktiviert die Möglichkeit, Escape-Sequenzen in String-Konstanten
einzufügen. Siehe Abschnitt „Sonderzeichen in Strings”.

OPTION EXPLICIT Wenn du diesen Befehl am Anfang eines Programms einfügst, musst du
jede Variable explizit mit den Befehlen DIM, LOCAL oder STATIC
deklarieren, bevor du sie im Programm verwenden kannst.

Diese Option ist standardmäßig deaktiviert, wenn ein Programm
ausgeführt wird. Wenn sie verwendet wird, muss sie angegeben werden,
bevor Variablen verwendet werden.

OPTION FAST AUDIO ON|
OFF

Bei Verwendung des Befehls PLAY SOUND können Änderungen an
Sounds, Lautstärken oder Frequenzen zu hörbaren Klicks in der Ausgabe
führen. Die Firmware versucht, dies zu mildern, indem sie die Lautstärke
der vorherigen Ausgabe des Kanals vor der Änderung der Ausgabe
herunterfährt und dann wieder hochfährt. Dies verbessert die
Audioausgabe erheblich, führt jedoch zu einer kurzen Verzögerung des
Befehls PLAY SOUND (im schlimmsten Fall 3 ms). Diese Verzögerung
kann durch die Verwendung von OPTION FAST AUDIO ON in einem
Programm vermieden werden. Die hörbaren Klicks können dann wieder
auftreten, aber das liegt im Ermessen des Programmierers.

Dies ist eine temporäre Option, die bei jeder Ausführung eines
Programms auf OFF zurückgesetzt wird.

OPTION FNKey string  Definiert die Zeichenfolge, die generiert wird, wenn eine Funktionstaste
an der Eingabeaufforderung gedrückt wird. „FNKey” kann F1 und F5
bis F9 sein. Durch Setzen von string$ auf "" wird die gespeicherte
Funktion gelöscht und die ursprüngliche Funktion der Taste
wiederhergestellt.

Beispiel:
OPTION F8 „RUN “+chr$(34)+”myprog” +chr$(34)+chr$(13)+chr$(10).

Dieser Befehl muss in der Eingabeaufforderung ausgeführt werden (nicht
in einem Programm).

Seite116 PicoMite-Benutzerhandbuch

OPTION GPS  Konfiguriert den PicoMite für die Verbindung mit einem GPS-Modul.
Diese Integration ermöglicht es dem PicoMite, NMEA-Datenströme
automatisch im Hintergrund zu analysieren und Standort-, Zeit- und
Geschwindigkeitsdaten über die Funktion `GPS()` für das
Benutzerprogramm verfügbar zu machen.

Das wird ausführlich in der Datei Option_GPS_User_Manual.pdf
beschrieben, die im ZIP-Archiv mit der Firmware enthalten ist.

OPTION HEARTBEAT
ON/OFF [HEARTBEATpin]

 Aktiviert oder deaktiviert die Ausgabe der Heartbeat-LED.

Beim Pico-W wird der Heartbeat über einen Pin gesteuert, der vom
CWY43-Chip kontrolliert wird.

NICHT WEBMITE-VERSION

Standardmäßig ist der Heartbeat bei RP2350A-Chips auf GP25
aktiviert.

Wenn er deaktiviert ist, kann das Programm die LED über GP25
steuern.

Bei RP2350B-Chips ist der Heartbeat nicht aktiviert.

Wenn der Heartbeat deaktiviert ist, kann der Befehl sowohl zum
Aktivieren als auch zum optionalen Festlegen des zu verwendenden
Pins (standardmäßig GP25) verwendet werden.

OPTION HDMI-PINS
clockpositivepin, d0positivepin,
d1positivepin, d2positivepin


NUR HDMI-VERSION

Legen Sie die für den HDMI-Videoausgang verwendeten I/O-Pins fest.
Dies ist nur bei nicht standardmäßigen PCB-Layouts erforderlich.

Die positiven HDMI-Signalpins werden nach „nbr” unten eingestellt.
Gültige Werte sind 0-7, und die Pins dürfen sich für jeden Kanal nicht
überschneiden. Wenn „nbr” eine gerade Zahl ist, ist der negative Ausgang
auf dem physischen Pin+1, wenn „nbr” eine ungerade Zahl ist, ist er auf
dem physischen Pin-1.

nbr HSTX Nbr Physikalischer Pin

 0 HSTX0 GP12
 1 HSTX1 GP13
 2 HSTX2 GP14
 3 HSTX3 GP15
 4 HSTX4 GP16
 5 HSTX5 GP17
 6 HSTX6 GP18
 7 HSTX7 GP19

Die Standardeinstellung ist: OPTION HDMI-PINS 2, 0, 6, 4
Das heißt:

CK+ und CK- sind GP14 und GP15 zugewiesen
D0+ und D0- sind GP12 und GP13 zugeordnet
D1+ und D1- sind GP18 und GP19 zugewiesen
D2+ und D2- sind GP16 und GP17 zugewiesen

OPTIONSTASTATUR nn
[,capslock] [,numlock]
[,repeatstart] [,repeatrate]

oder

OPTION KEYBOARD
DISABLE

 Konfiguriere eine Tastatur. Diese kann für die Konsoleneingabe
verwendet werden, und alle eingegebenen Zeichen sind über alle Befehle
verfügbar, die von der Konsole gelesen werden (seriell über USB).

„nn“ ist ein zweistelliger Code, der das Tastaturlayout angibt. Zur
Auswahl stehen „US“ für das Standard-Tastaturlayout in den USA,
Australien und Neuseeland, „UK“ für Großbritannien, „GR“ für
Deutschland, „FR“ für Frankreich, „BR“ für Brasilien und „ES“ für
Spanien.

Dieser Befehl muss in die Befehlszeile eingegeben werden und führt zu

PicoMite Benutzerhandbuch Seite 117

einem Neustart. Diese Einstellung kann mit folgendem Befehl
zurückgesetzt werden: OPTION KEYBOARD DISABLE

Die optionalen Parameter „capslock” und „numlock” sind True/False-
Ganzzahlen, die den Anfangszustand der Tastatur festlegen (Standard ist 0
und 1).

Die optionalen Parameter „repeatstart” und „repeatrate” legen die Zeit für
die erste Wiederholung einer gedrückten Taste und nachfolgende
Wiederholungen fest. Für eine USB-Tastatur sind sie 100 bis 2000 ms
und 25 bis 2000 ms. Bei einer PS2-Tastatur liegen sie zwischen 0 und 3,
was 250 ms, 500 ms, 750 ms und 1000 ms bedeutet (Standardwert ist 1),
und zwischen 0 und 31, was 33 ms bis 500 ms gemäß der PS2-Tastatur-
Spezifikation bedeutet (Standardwert ist 12 oder 100 ms).

OPTIONSTASTATUR I2C  Konfiguriert die Unterstützung für die Solderparty bbq20 mini I2C-
Tastatur.
Hinweis: OPTION SYSTEM I2C muss vor der Ausführung dieses
Befehls eingestellt werden.

OPTION KEYBOARD PINS
clockpin, datapin

 Ermöglicht dem Benutzer die Auswahl der Pins, die für den Anschluss
einer PS2-Tastatur verwendet werden sollen. Der Standardwert ist Pin
11 (GP8) und Pin 12 (GP9).

Die PS2-Tastatur muss deaktiviert sein (OPTION KEYBOARD
DISABLE).

OPTION KEYBOARD
REPEAT repeatstart , repeatrate


NUR USB-TASTATUR

Legt die Zeit für die erste Wiederholung einer gedrückten Taste (100–
2000) und nachfolgende Wiederholungen (25–2000) in Millisekunden
fest.

OPTION LCD-PINS clkpin,
mosipin, misopin

 Die Firmware unterstützt die Trennung der SPI-Pins, die zum Ansteuern
eines LCD-Displays verwendet werden, von denen, die für Touch
und/oder die SD-Karte verwendet werden. Durch diese Trennung kann die
Firmware den zweiten Prozessor für die Arbeit mit dem Display nutzen,
ohne dass andere Funktionen beeinträchtigt werden. Das Einstellen der
LCD-SPI-Pins ist eine Voraussetzung für die Verwendung von
gepufferten Treibern mit dem RP2350 PicoMite. Die angegebenen Pins
müssen gültige SPI-Pins für die Funktionen clk, mosi (tx) und miso (rx)
sein. Wenn auch SYSTEM-SPI-Pins angegeben sind, müssen diese auf
einem anderen SPI-Kanal liegen.

OPTION LCDPANEL

OPTION LCDPANEL
VIRTUAL_C

oder

OPTION LCDPANEL
VIRTUAL_M


NICHT VGA- ODER HDMI-VERSIONEN

Konfiguriert ein LCD-Panel bei Versionen, die ein angeschlossenes LCD
unterstützen.

Konfiguriert ein virtuelles LCD-Panel ohne physisch angeschlossenes
Panel.

VIRTUAL _C = Farbe, 4 Bit, 320 x 240
VIRTUAL _M = Monochrom, 640 x 480

Mit dieser Funktion kann ein Programm grafische Bilder auf diesem
virtuellen Panel zeichnen und sie dann als BMP-Datei speichern. Nützlich
zum Erstellen eines Grafikbildes für den Export ohne angeschlossenes
Display.

OPTION LCDPANEL-
Optionen

Konfiguriert die PicoMite-Firmware für die Verwendung mit einem
angeschlossenen LCD-Panel.

Seite118 PicoMite-Benutzerhandbuch

oder

OPTION LCDPANEL DISABLE

Schau dir das Kapitel „LCD-Anzeigen” an, um mehr zu erfahren.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION LCDPANEL
CONSOLE [Schriftart [, fc [,
bc [, blight]]] [,NOSCROLL]

oder

OPTION LCDPANEL
NOCONSOLE

Konfiguriert das LCD-Display für die Verwendung als Konsolenausgabe.
Das LCD muss transparenten Text unterstützen (z. B. die Controller
SSD1963_x, ILI9341 oder ST7789_320).

„font” ist die Standardschriftart, „fc” ist die Standard-Vordergrundfarbe,
„bc” ist die Standard-Hintergrundfarbe. Diese Parameter sind optional und
standardmäßig auf Schriftart 1, Weiß, Schwarz und 100 % eingestellt.
Diese Einstellungen werden beim Einschalten angewendet.

Der optionale Befehl NOSCROLL ändert die Firmware so, dass bei der
Ausgabe auf die letzte Zeile des Displays das Display nicht scrollt,
sondern gelöscht wird und die Ausgabe oben auf dem Display fortgesetzt
wird. Dadurch können Displays, die kein Lesen unterstützen, als
Konsolengerät verwendet werden, und:

Beachte, dass bei anderen Displays als dem SSD1963 das Scrollen für
jede Konsolenausgabe sehr langsam ist, daher wird empfohlen, für diese
Displays die Option NOSCROLL zu verwenden. Diese Einstellung wird
im Flash gespeichert und beim Start automatisch angewendet. Um sie zu
deaktivieren, benutze den Befehl OPTION LCDPANEL NOCONSOLE.

Dieser Befehl muss an der Eingabeaufforderung ausgeführt werden.

OPTION LCDPANEL USER
hres, vres

Konfiguriert einen vom Benutzer geschriebenen Anzeigetreiber in
MMBasic. Eine Beschreibung zum Schreiben des Treibers findest du in
der Datei „User Display Driver.txt” in der PicoMite-Firmware-
Distribution.

OPTION LCDPANEL
CONSOLE [Schriftart [, fc
[,bc]]

oder

OPTION LCDPANEL
NOCONSOLE


NUR VGA- UND HDMI-VERSIONEN

Ändert die Standardschriftart, die auf dem VGA- oder HDMI-Display
verwendet wird.
„fc” ist die Vordergrundfarbe und „bc” ist die Hintergrundfarbe.

Deaktiviert die Konsolenausgabe auf dem VGA-/HDMI-Display. Diese
Option ist dauerhaft, sowohl die Druckausgabe als auch die
Konsolenausgabe werden deaktiviert und nur Grafikbefehle werden auf
dem VGA-Bildschirm ausgegeben. Wenn die Ausgabe in einem
Programm vorübergehend deaktiviert werden soll, verwenden Sie den
Befehl OPTION CONSOLE.

Bei SSD1963-basierten Displays im Querformat und SPI-Displays im
Hochformat nutzt die Firmware H/W-Scrolling, um die Leistung der
Displaykonsole zu verbessern.

OPTION LCD320 EIN/AUS

NICHT VGA- ODER HDMI-VERSIONEN

Damit werden 16-Bit-LCD-Displays im 320x240-Modus aktiviert oder
deaktiviert, sodass beispielsweise Spiele auf diesen größeren LCD-
Displays möglich sind. Bei 800x480-Displays wird das 320x240-Bild um
den Faktor 2 skaliert und nimmt den Bildschirmbereich 80,0 bis 719,479
ein.

Bei 480x272-Displays wird das 320x240-Bild in einem Fenster angezeigt
und nimmt den Bildschirmbereich 80,16 bis 399,255 ein.

OPTION LEGACY ON

oder

OPTION LEGACY OFF

Damit schaltest du den Kompatibilitätsmodus mit den Grafikbefehlen ein
oder aus, die im ursprünglichen Colour Maximite verwendet wurden. Die
Befehle COLOUR, LINE, CIRCLE und PIXEL verwenden die alte
Syntax, und alle Zeichenbefehle akzeptieren Farben im Bereich von 0 bis

PicoMite Benutzerhandbuch Seite 119

7. Hinweise:

 Schlüsselwörter wie RED, BLUE usw. sind nicht implementiert und
sollten daher bei Bedarf als Konstanten definiert werden.

 Die Syntax der Legacy-Befehle findest du im Colour Maximite
MMBasic Language Manual. Du kannst es unter
https://geoffg.net/OriginalColourMaximite.html runterladen.

OPTIONSLISTE Hier werden die Einstellungen aller Optionen aufgelistet, die von ihrer
Standardeinstellung geändert wurden und dauerhaft sind. OPTION LIST
zeigt auch die Versionsnummer und die geladene Firmware an. Dieser
Befehl muss an der Eingabeaufforderung (nicht in einem Programm)
ausgeführt werden.

OPTION LOCAL
VARIABLES n

Dieser Befehl legt die Anzahl der gesamten Variablen (MM.INFO(MAX
VARS)) fest, die als lokale Variablen zugewiesen werden sollen. Im
Allgemeinen sollte das nicht nötig sein, aber wenn du zum Beispiel viele
globale Konstanten zuweisen möchtest und nicht viele lokale Variablen
benötigst, kannst du damit das Gleichgewicht ändern. Dies ist eine
temporäre Option, die bis zum Zurücksetzen des Prozessors bestehen
bleibt. Sie kann nicht aufgerufen werden, wenn bereits Variablen
definiert wurden.

OPTION MILLISECONDS
ON|OFF

Damit wird die Ausgabe von Millisekunden in der Funktion TIME$
aktiviert oder deaktiviert.

D. h. HH:MM:SS.mmm

Der Millisekundenzähler wird auf Null gesetzt, wenn die Zeit mit dem
Befehl TIME, dem Befehl WEB NTP oder dem Befehl RTC GETTIME
aktualisiert wird. Die Standardeinstellung ist OFF.

OPTION MODBUFF
ENABLE/DISABLE [sizeinK]

 Erstellt oder entfernt einen Bereich des Flash-Speichers, der zum Laden
und Abspielen von .MOD-Dateien verwendet wird. Wenn diese Option
aktiviert ist, wird ein Mod-Puffer mit einer Größe von 128 KB erstellt.
Dies kann mit „sizeinK” überschrieben werden.

Beachte, dass diese Option einen Teil des Flash-Dateisystems reserviert
(d. h. das Flash-Dateisystem wird verkleinert). Standardmäßig
deaktiviert.

Hinweis: Diese Option ist bei einem RP2350 mit aktiviertem PSRAM
nicht erforderlich. In diesem Fall wird die MOD-Datei in den
Speicherplatz im PSRAM geladen.

OPTION MOUSE CLKpin,
DATApin

OPTION MAUS
DEAKTIVIEREN





NUR FÜR NICHT-USB-FIRMWARE

Stell die Pins so ein, dass sie für den Anschluss einer PS2-Maus genutzt
werden können. Mit diesem Befehl wird die Maus beim Booten
automatisch konfiguriert und du kannst Interrupts einrichten und Werte
lesen, ohne dass du dafür extra Befehle brauchst. Das ist anders als bei
MOUSE OPEN, wo die Maus nur verbunden wird, wenn das Programm
läuft. Die PS2-Maus MUSS deaktiviert sein.

Deaktiviert die automatische Verbindung zu einer PS2-Maus und gibt
die Pins für die normale Nutzung frei.

OPTION MOUSE
SENSITIVITY f!

 NUR USB-FIRMWARE

Standardmäßig betreibt die Firmware eine USB-Maus im Boot-Modus.
Das heißt, sie gibt 8-Bit-X- und Y-Positionen und den Status der drei
Standardtasten zurück. Durch Einstellen von OPTION MOUSE

Seite120 PicoMite-Benutzerhandbuch

https://geoffg.net/OriginalColourMaximite.html
https://geoffg.net/OriginalColourMaximite.html

SENSITIVITY weist die Firmware die Maus an, mit ihrer vollen
Leistungsfähigkeit zu arbeiten. Das heißt, sie versucht, den gesamten
von der Maus empfangenen USB-Bericht zu interpretieren,
einschließlich der Radposition, aller Tasten und der 8-, 12- oder 16-Bit-
x/y-Positionsinformationen.

Durch Einstellen von „f$“ wird der vollständige Mausbericht aktiviert
und die x/y-Positionen werden um „f!“ skaliert.

Die Firmware kann nicht alle Maustypen unterstützen. Wenn dies bei
einer bestimmten Maus zu Problemen führt, setze sie mit OPTION
MOUSE SENSITIVITY 0 auf den Startmodus zurück.

Die Aktivierung dieser Option mit dem Wert 1,0 bei Verwendung einer
standardmäßigen Microsoft Basic Optical-Maus wurde vollständig
getestet und ermöglicht die Verwendung des Rads in einem Programm.

OPTION NOCHECK ON/OFF Wenn dieser Befehl auf ON gesetzt ist, wird die Standardprüfung auf
Unterbrechungen und Strg-C am Ende jedes Befehls deaktiviert. Wenn
du ihn auf ON setzt, können zeitkritische Prozesse ohne
Unterbrechungsrisiko ausgeführt werden. Der Befehl sollte aber
vorsichtig verwendet werden, da das Programm sonst nur mit einem
H/W-Reset gestoppt werden kann.

OPTION PICO EIN/AUS 
ALLE VERSIONEN AUSSER WEBMITE

Wenn dieser Befehl auf AUS gesetzt ist, sind die Pins GP23, GP24 und
GP29 nicht für die normale Pico-Verwendung eingerichtet und sofort
verfügbar. Standardmäßig ist er für RP2350A und RP2040 auf EIN und
für RP2350B auf AUS gesetzt.

OPTION PIN-Nr.

Stell „nbr” als PIN (Persönliche Identifikationsnummer) für den Zugriff
auf die Konsolenaufforderung ein. „nbr” kann eine beliebige Zahl größer
als Null mit bis zu acht Stellen sein.

Wenn ein laufendes Programm aus irgendeinem Grund versucht, zur
Befehlszeile zurückzukehren, fragt MMBasic diese Nummer ab, bevor
die Eingabeaufforderung angezeigt wird. Das ist eine
Sicherheitsfunktion, denn ohne Zugriff auf die Befehlszeile kann ein
Eindringling weder das Programm im Speicher auflisten oder ändern
noch die Funktionsweise von MMBasic in irgendeiner Weise
modifizieren. Um diese Funktion zu deaktivieren, gibst du die PIN-
Nummer Null ein (d. h. OPTION PIN 0).

Eine dauerhafte Sperre kann durch Eingabe von 99999999 als PIN-
Nummer aktiviert werden. Wenn eine dauerhafte Sperre aktiviert ist oder
die PIN-Nummer verloren geht, kann das Problem nur durch erneutes
Laden der PicoMite-Firmware behoben werden.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION PLATFORM name$  Ermöglicht es einem Benutzer, eine bestimmte Hardwarekonfiguration
zu identifizieren, die dann in Programmen zur Steuerung des
Programmablaufs verwendet werden kann.

„name$” kann bis zu 31 Zeichen lang sein. Dies ist eine dauerhafte
Option.

MM.INFO$(PLATFORM) gibt diese Zeichenfolge zurück.

Das kann zum Beispiel für eine bestimmte Hardware-Konfiguration
verwendet werden:
 OPTION PLATFORM „GameMite”
Dann können Programme, die auf dieser oder anderen Plattformen
laufen, Folgendes verwenden:

PicoMite Benutzerhandbuch Seite 121

 IF MM.INFO$(PLATFORM) = "GameMite" THEN …

OPTION POWER PFM |
PWM

 Ändert den Betrieb des 3,3-V-Schaltnetzteils.

Standardmäßig läuft das im PFM-Modus. PWM sorgt für weniger
Geräusche, ist aber nicht so energieeffizient. Denk dran, dass das System
bei hoher Belastung unabhängig von dieser Einstellung im PWM-Modus
läuft.

OPTION PSRAM PIN n

oder

OPTION PSRAM PIN
DISABLE

 Aktiviert/deaktiviert die PSRAM-Unterstützung.

„n” ist der PSRAM-Chip-Select-Pin (CS) und kann GP0, GP8, GP19 oder
GP47 sein.

Normalerweise wird GP47 für Pimoroni-Boards verwendet.
Standardmäßig ist die Option deaktiviert.

Nach dem Einschalten ist der Inhalt des PSRAM unbestimmt. Lösche
ihn vor der Verwendung mit RAM ERASE.

OPTION RESET  Setzt alle gespeicherten Optionen auf ihre Standardwerte zurück.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION RESET cfg

oder

OPTION RESET LIST

 Setzt alle Optionen für die Konfiguration „cfg” auf ihre Standardwerte
zurück.

OPTION RESET LIST zeigt alle verfügbaren Konfigurationen an.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION RESOLUTION nn
[,cpuspeedinKhz]

NUR FÜR HDMI- UND VGA-VERSIONEN

Bei Firmware mit HDMI-Video stellst du die Videoauflösung auf „nn“
ein.

Dabei ist „nn”:

640x480 oder 640

720x400 oder 720

800x600 oder 800 (nur RP2350)

848x480 oder 848 (nur RP2350)

1280x720 oder 1280 (nur HDMI)

1024 x 768 oder 1024 (nur HDMI)

Für 640x480 kann die Bildwiederholfrequenz auf 60 Hz (252 MHz oder
378 MHz) oder 75 Hz (315 MHz) eingestellt werden, indem man
„cpuspeedinKHz” an den Befehl hängt (also 252000, 378000 oder
315000).

Jede VGA- und HDMI-Auflösung kann in verschiedenen Modi
betrieben werden, die mit dem Befehl MODE eingestellt werden.

Beachte, dass die Auflösungen 800x600 und 848x480 sowohl die
maximale Programmgröße als auch den für Basic-Programme
verfügbaren variablen Speicherplatz reduzieren.

OPTION RTC AUTO
ENABLE | DISABLE

 Aktiviert das automatische Laden von Zeit und Datum aus dem RTC
beim Booten und jede Stunde. Wenn diese Option aktiviert ist und der
RTC nicht reagiert, wird jedes laufende Programm mit einer
Fehlermeldung abgebrochen. An der Befehlszeile wird eine
Informationsmeldung ausgegeben.

Seite122 PicoMite-Benutzerhandbuch

Dieser Befehl muss an der Befehlszeile (nicht in einem Programm)
ausgeführt werden.

OPTION SDCARD CSpin
[,CLKpin, MOSIpin,
MISOpin]

oder

OPTION SDCARD DISABLE

 Legen Sie die für die SD-Kartenschnittstelle zu verwendenden E/A-Pins
fest oder deaktivieren Sie sie.

Wenn die optionalen Pins nicht angegeben werden, verwendet die SD-
Karte die durch OPTION SYSTEM SPI angegebenen Pins.

Hinweis: Die mit OPTION SYSTEM SPI angegebenen Pins müssen ein
gültiger Satz von Hardware-SPI-Pins (SPI oder SPI2) sein, die mit
OPTION SDCARD angegebenen Pins können jedoch beliebige Pins
sein. Die mit OPTION SYSTEM SPI und OPTION SDCARD
angegebenen Pins dürfen nicht identisch sein.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION SDCARD
COMBINED CS

 Hiermit wird festgelegt, dass der Touch-Chip-Auswahl-Pin auch für die
SD-Karte verwendet wird. In diesem Fall ist eine externe Schaltung
erforderlich, um die SD-Chip-Auswahl zu implementieren. Siehe „SD-
Karten” im Kapitel „Programm- und Datenspeicherung”.

OPTION SERIAL CONSOLE
uartapin, uartbpin [,B]

OPTION SERIAL CONSOLE
DISABLE

 Legt fest, dass der Zugriff auf die Konsole über einen seriellen
Hardware-Port (anstelle eines virtuellen seriellen Ports über USB)
erfolgt.

„uartapin” und „uartbpin” können ein beliebiges gültiges Paar von rx-
und tx-Pins für COM1 oder COM2 sein. Die Reihenfolge, in der sie
angegeben werden, ist nicht wichtig. Die Geschwindigkeit ist
standardmäßig auf 115200 Baud eingestellt, kann aber mit OPTION
BAUDRATE geändert werden. Durch Hinzufügen des Parameters „B”
wird die Ausgabe sowohl an den seriellen Port als auch an den USB-Port
gesendet.

Zurück zur normalen USB-Konsole.

Diese Befehle müssen an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION SYSTEM I2C sdapin,
sclpin [,SLOW/FAST]

 Gib den I2C-Port und die Pins an, die von Systemgeräten (LCD-Panel
und RTC) genutzt werden sollen.

Die PicoMite-Firmware nutzt einen bestimmten I2C-Port für
Systemgeräte, während der andere für den Programmierer bleibt. Dieser
Befehl legt fest, welche Pins genutzt werden sollen und somit welcher
der I2C-Ports genutzt wird.

Die dem SYSTEM I2C zugewiesenen Pins stehen für andere MMBasic
SETPIN-Einstellungen nicht zur Verfügung, können aber für zusätzliche
I2C-Geräte unter Verwendung des Standard-I2C-Befehls verwendet
werden. Hinweis: I2C(2) OPEN und I2C(2) CLOSE sind in diesem Fall
nicht verfügbar.

Standardmäßig wird der I2C-Port mit einer Geschwindigkeit von 400
kHz und einer Zeitüberschreitung von 100 ms geöffnet. Die I2C-
Frequenz kann mit dem optionalen dritten Parameter eingestellt werden,
der die Werte FAST = 400 kHz oder SLOW = 100 kHz annehmen kann.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

PicoMite Benutzerhandbuch Seite 123

OPTION SYSTEM SPI
CLKpin, MOSIpin, MISOpin

oder

OPTION SYSTEM SPI
DISABLE

 Legen Sie den SPI-Port und die Pins für die Verwendung durch
Systemgeräte (SD-Karte, LCD-Panel usw.) fest oder deaktivieren Sie
sie.

Die PicoMite-Firmware nutzt einen bestimmten Hardware-SPI-Port für
Systemgeräte, während der andere für den Benutzer verfügbar bleibt.
Dieser Befehl legt fest, welche Pins verwendet werden sollen und somit
welcher der SPI-Ports genutzt wird. Die dem SYSTEM SPI
zugewiesenen Pins stehen für andere MMBasic-Befehle nicht zur
Verfügung.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION TAB 2 | 3 | 4 | 8  Legt den Abstand für die Tabulatortaste fest. Der Standardwert ist 2.

OPTION TCP SERVER PORT
n


NUR WEBMITE

Startet bei jedem Neustart von WebMite einen TCP-Server auf Port „n“.
Normalerweise nutzen HTTP-Server Port 80.

Verwende „OPTION TCP SERVER PORT 0”, um die Funktion zu
deaktivieren.

Wenn der Server läuft, kann er auf bis zu MM.INFO(MAX
CONNECTIONS) reagieren.

OPTION TELNET-KONSOLE
AUS|NUR|EIN


NUR WEBMITE

Konfiguriert die Handhabung der Konsole über Telnet.

ON = Konsolenausgabe wird an USB und Telnet gesendet
ONLY = Konsolenausgabe nur an Telnet
AUS = Konsolenausgabe nur an USB

OPTION TFTP OFF|ON 
NUR WEBMITE

Schaltet den TFTP-Server ein oder aus. Standardmäßig ist er
eingeschaltet.

OPTION TOUCH T_CS-Pin,
T_IRQ-Pin [, Beep]

oder

OPTION TOUCH DISABLE


NICHT VGA- ODER HDMI-VERSIONEN

Konfiguriert MMBasic für die berührungsempfindliche Funktion eines
angeschlossenen LCD-Bildschirms.

„T_CS-Pin” und „T_IRQ-Pin” sind die I/O-Pins, die für die
Chipauswahl bzw. den Touch-Interrupt verwendet werden (es können
beliebige freie Pins verwendet werden). Die restlichen Pins werden mit
denen verbunden, die mit dem Befehl OPTION SYSTEM SPI
angegeben wurden.

„Beep” ist ein optionaler Pin, der mit einem kleinen Summer/Beeper
verbunden werden kann, um ein „Klicken” oder einen Piepton zu
erzeugen, wenn eine erweiterte Grafiksteuerung berührt wird (z. B.
Optionsfeld, Schalter usw.). Dies wird in Advanced Graphics
Functions.pdf beschrieben.

Dieser Befehl muss an der Eingabeaufforderung (nicht in einem
Programm) ausgeführt werden.

OPTION TOUCH FT6336
IRQpin, RESETpin [,BEEPpin]
[,sensitivity]


NICHT VGA- ODER HDMI-VERSIONEN

Aktiviert die Touch-Unterstützung für den kapazitiven Touch-Chip
FT6336. Die Empfindlichkeit ist eine Zahl zwischen 0 und 255 – der
Standardwert ist 50, je niedriger, desto empfindlicher.

SDA und SCK sollten an gültige I2C-Pins angeschlossen und mit
OPTION SYSTEM I2C eingerichtet werden. Sieh dir auch die TOUCH-

Seite124 PicoMite-Benutzerhandbuch

Funktion an.

OPTION VCC-Spannung Legt die Spannung (Vcc) fest, die an den Raspberry Pi Pico angelegt
wird.

Bei Verwendung der ADC-Pins zur Spannungsmessung verwendet die
PicoMite-Firmware die Spannung am Pin mit der Bezeichnung VREF
als Referenz. Diese Spannung kann mit einem DMM genau gemessen
und mit diesem Befehl für eine genauere Messung eingestellt werden.

Der Parameter wird nicht gespeichert und sollte im Programm
initialisiert werden. Der Standardwert, wenn nicht festgelegt, ist 3,3.

OPTION UDP-SERVER-
PORT n


NUR WEBMITE-VERSION

Richtet einen Listening-Socket auf dem angegebenen Port ein. Alle an
diesem Port empfangenen UDP-Datagramme werden verarbeitet und der
Inhalt in MM.MESSAGE$ gespeichert. Die IP-Adresse des Absenders
wird in MM.ADDRESS$ gespeichert. Hinweis: Wenn das UDP-
Datagramm länger als 255 Zeichen ist, werden alle zusätzlichen Zeichen
verworfen.

Verwende „OPTION UDP SERVER PORT 0”, um die Funktion zu
deaktivieren.

OPTION VGA-PINS HSYNC-
Pin, BLUE-Pin

 Nur VGA-Version

Ändert die Pins, die für die VGA-Bildschirmausgabe verwendet werden,
und macht das PCB-Design oder die Verdrahtung flexibler.
„HSYNCpin” zeigt den Anfang eines Paares aufeinanderfolgender GP-
nummerierter Pins an, die mit HSYNC und VSYNC verbunden sind.

„BLUEpin” zeigt an, wo vier aufeinanderfolgende GP-nummerierte Pins
anfangen, die mit BLUE, GREEN_LSB, GREEN_MSB und RED
verbunden sind.

OPTION WEB-
MELDUNGEN EIN/AUS

NUR WEBMITE-VERSION

Deaktiviert informative Web-Meldungen, wenn auf „OFF“ gesetzt.
Standardmäßig ist „ON“ eingestellt.

OPTION WIFI ssid$, passwd$,
[name$] [,ipaddress$, mask$,
gateway$]


NUR WEBMITE-VERSION

Konfiguriert die Firmware so, dass sie sich beim Neustart automatisch
mit einem WLAN-Netzwerk verbindet.

„ssid$” ist der Name des Netzwerks und „password$” ist das
Zugangspasswort. Beide sind Zeichenfolgen und wenn
Zeichenfolgenkonstanten verwendet werden, sollten sie in
Anführungszeichen gesetzt werden.

Optional kann ein Name für das Gerät angegeben werden „name$“,
andernfalls wird ein Name aus der eindeutigen Geräte-ID erstellt.

Optional können eine statische IP-Adresse, eine IP-Maske und eine
Gateway-Adresse als „ipaddress$”, „mask$” und „gateway$” angegeben
werden.

z. B. OPTION WIFI „mysid”, „mypassword”, „myPico”,
„192.168.1.111”, „255.255.255.0”, „192.168.1.1”

PicoMite Benutzerhandbuch Seite 125

Befehle
Detaillierte Auflistung
Eckige Klammern zeigen an, dass der Parameter oder die Zeichen optional sind.

 ‘ (einfaches
Anführungszeichen)

Startet einen Kommentar, und jeder darauf folgende Text wird ignoriert.
Kommentare können an beliebiger Stelle in einer Zeile platziert werden.

*Datei Der Sternchenbefehl ist eine Abkürzung für RUN, die nur an der MMBasic-
Eingabeaufforderung verwendet werden kann. Beispiel:

 * RUN

 *foo RUN „foo”

 *"foo bar" RUN „foo bar”

 *foo –wombat RUN „foo”, „--wombat”

 *foo „wom” RUN „foo”, CHR$(34) + „wom” + CHR$(34)

 *foo --wom="bat" RUN „foo”, „--wom=” + CHR$(34) + „bat” + CHR$(34)

String-Ausdrücke werden von diesem Befehl nicht unterstützt/ausgewertet; alle
angegebenen Argumente werden als Literalstring an den Befehl RUN
übergeben.

 ? (Fragezeichen) Abkürzung für den Befehl PRINT.

/*

*/

Start und Ende von mehrzeiligen Kommentaren. /* und */ müssen die ersten
Zeichen ohne Leerzeichen am Anfang einer Zeile sein und von einem
Leerzeichen oder einem Zeilenende gefolgt werden (d. h. es handelt sich um
MMBasic-Befehle). Mehrzeilige Kommentare können nicht innerhalb von
Unterprogrammen und Funktionen verwendet werden. Alle Zeichen nach */ in
einer Zeile werden ebenfalls als Kommentar behandelt.

A: oder B: Abkürzung für DRIVE „A:“ und DRIVE „B:“ in der Befehlszeile

ADC

ADC OPEN freq, n_channels
[,interrupt]

Die ADC-Befehle bieten eine alternative Methode zur Aufzeichnung analoger
Eingänge und sind für die schnelle Aufzeichnung vieler Messwerte in einem
Array gedacht.

Dabei werden bis zu 4 ADC-Kanäle aus der Gruppe ADC0-ADC3 zur
Verwendung zugewiesen und so eingestellt, dass sie mit der angegebenen
Frequenz umgewandelt werden.

Die Pin-Reihe umfasst GP26, GP27, GP28 und GP29 für RP2040 und
RP2350A oder GP40, GP41, GP42, GP43 auf RP2350B. Wenn die Anzahl der
Kanäle eins ist, wird immer GP26 (ADC0) verwendet, wenn zwei, werden
GP26 und GP27 (ADC0 und ADC1) verwendet usw. Die Abtastung mehrerer
Kanäle erfolgt sequenziell (es gibt nur einen ADC). Die Pins sind auf die
Funktion festgelegt, wenn ADC OPEN aktiv ist.

Die maximale Gesamtfrequenz ist CPU-Geschwindigkeit/96 (z. B. 520 kHz,
wenn alle vier Kanäle mit einer CPU-Einstellung von 200 MHz abgetastet
werden sollen). Denk dran, dass eine Gesamtabtastfrequenz von über 500 kHz
eine Übertaktung des ADC bedeutet.

Der optionale Interrupt-Parameter gibt an, welcher Interrupt nach Abschluss
der Konvertierung aufgerufen werden soll. Wenn nichts angegeben ist, wird
die Konvertierung blockiert.

ADC-FREQUENZ freq Damit änderst du die Abtastfrequenz der ADC-Umwandlung, ohne schließen
und wieder öffnen zu müssen.

ADC CLOSE Gibt die Pins für die normale Verwendung frei.

Seite126 PicoMite-Benutzerhandbuch

ADC START array1!()
[,array2!()] [,array3!()]
[,array4!()] [,C1min] [,C1max]
[,C2min] [,C2max] [,C3min]
[,C3max] [,C4min] [,C4max]

Startet die Wandlung in die angegebenen Arrays. Die Arrays müssen
Fließkommazahlen sein und die gleiche Größe haben. Die Größe der Arrays
bestimmt die Anzahl der Wandlungen. Start kann wiederholt aufgerufen
werden, sobald der ADC OPEN ist.

„Cxmin” und „Cxmax” skalieren die Messwerte. Wenn zum Beispiel
C1min=200 und C1max=100 sind, werden Werte zwischen 200 und 100 für
äquivalente Spannungen von 0 bis 3,3 erzeugt. Wenn die Skalierung nicht
benutzt wird, werden die Ergebnisse als Spannung zwischen 0 und OPTION
VCC (Standardwert 3,3 V) zurückgegeben.

ADC RUN array1%
(),array2%)

Führt den ADC kontinuierlich im doppelt gepufferten Modus aus. Der ADC
füllt zuerst array1% und dann array2% und dann wieder array1% usw. Wenn
im Befehl ADC OPEN mehr als ein ADC-Kanal angegeben ist, werden die
Daten verschachtelt. Die Daten werden als gepackte 8-Bit-Werte
zurückgegeben (verwende MEMORY UNPACK, um sie in ein normales Array
zu konvertieren). MM.INFO(ADC) gibt die Nummer des aktuell zum Lesen
verfügbaren Puffers zurück (1 oder 2).

ARRAY ADD in(),
Wert ,out()

Fügt den Wert „value” zu jedem Element der Matrix in() hinzu (oder hängt ihn
für Zeichenfolgen an) und speichert das Ergebnis in out(). Funktioniert für
Arrays beliebiger Dimensionen von Zeichenfolgen sowie für Ganzzahlen und
Gleitkommazahlen (Konvertierung zwischen Ganzzahlen und
Gleitkommazahlen möglich). Die Einstellung von num auf 0 oder „” ist
optimiert und eine schnelle Methode zum Kopieren eines gesamten Arrays. in()
und out() können dasselbe Array sein.

ARRAY INSERT
targetarray(), [d1] [,d2] [,d3]
[,d4] [,d5] , sourcearray()

Das ist das Gegenteil von ARRAY SLICE, hat eine sehr ähnliche Syntax und
ermöglicht es dir zum Beispiel, einen einzelnen Vektor in einem Array von
Vektoren mit einem einzigen Befehl oder ein eindimensionales Array von
Zeichenfolgen in ein zweidimensionales Array von Zeichenfolgen zu ersetzen.
Die Arrays können numerisch oder Zeichenfolgen sein, und „sourcearray” und
„destinationarray” müssen gleich sein (Hinweis: Bei numerischen Arrays kann
zwischen Ganzzahlen und Gleitkommazahlen konvertiert werden).

Beispiel:
 OPTION BASE 1
 DIM targetarray(3,4,5)
 DIM sourcearray(4)=(1,2,3,4)
 ARRAY INSERT targetarray(), 2, , 3, sourcearray()
Setzt die Elemente 2,1,3 = 1 und 2,2,3 = 2 und 2,3,3 = 3 und 2,4,3 = 4

ARRAY SET value, array() Setzt alle Elemente in array() auf den Wert „value”. Der Wert kann eine Zahl
oder eine Zeichenfolge sein, und „array” muss gleich bleiben (Hinweis:
Konvertierung zwischen Ganzzahlen und Gleitkommazahlen möglich).
Beachte, dass dies die schnellste Methode ist, um ein Array zu löschen, indem
es auf Null oder eine leere Zeichenfolge gesetzt wird.

PicoMite Benutzerhandbuch Seite 127

ARRAY SLICE sourcearray(),
[d1] [,d2] [,d3] [,d4] [,d5]
destinationarray()

Dieser Befehl kopiert einen bestimmten Satz von Werten aus einem
mehrdimensionalen Array in ein eindimensionales Array. Das geht viel
schneller als mit einer FOR-Schleife. Der Ausschnitt wird festgelegt, indem du
für alle Indizes des Quellarrays außer einem einen Wert angibst. Der Befehl
sollte so viele Indizes enthalten, einschließlich des leeren, wie das Quellarray
Dimensionen hat. Die Arrays können numerisch oder Zeichenfolgen sein, und
„sourcearray” und „destinationarray” müssen gleich sein (Hinweis: Bei
numerischen Arrays kann zwischen Ganzzahlen und Gleitkommazahlen
konvertiert werden).
Beispiel:
 OPTION BASE 1
 DIM a(3,4,5)
 DIM b(4)
 ARRAY SLICE a(), 2, , 3, b()
Kopiert die Elemente 2,1,3 und 2,2,3 und 2,3,3 und 2,4,3 in das Array b().

ARC x, y, r1, [r2], a1, a2 [, c] Zeichnet einen Kreisbogen mit einer bestimmten Farbe und Breite zwischen
zwei Radien (in Grad angegeben). Die Parameter für den Befehl ARC sind:

x: X-Koordinate des Mittelpunkts des Bogens
y: Y-Koordinate des Mittelpunkts des Bogens
r1: Innenradius des Bogens
r2: äußerer Radius des Bogens – kann weggelassen werden, wenn er 1
Pixel breit ist
a1: Startwinkel des Bogens in Grad
a2: Endwinkel des Bogens in Grad
c: Farbe des Bogens (wenn nichts angegeben ist, wird die
Vordergrundfarbe genommen)
Null Grad ist die 12-Uhr-Position.

ASTRO Berechnet die Position eines Himmelsobjekts anhand der manuell mit dem
Befehl LOCATION eingestellten Zeit und Position.

Dies ist einer von mehreren Befehlen, die hochpräzise astronomische
Berechnungen durchführen, die für die Ausrichtung von Teleskopen oder die
Navigation geeignet sind. Eine detaillierte Beschreibung findest du in der Datei
„GPS_Astro_Reference.pdf“, die im ZIP-Archiv zum Herunterladen der
Firmware enthalten ist.

Seite128 PicoMite-Benutzerhandbuch

AUTOSAVE

oder

AUTOSAVE CRUNCH

oder

AUTOSAVE APPEND

oder

AUTOSAVE N

Hiermit startest du den automatischen Programmeingabemodus. Dieser Befehl
nimmt Textzeilen von der seriellen Konsole und speichert sie im
Programmspeicher.

Dies ist eine Möglichkeit, ein BASIC-Programm auf den Raspberry Pi Pico zu
übertragen. Das zu übertragende Programm kann in einen Terminalemulator
eingefügt werden, und dieser Befehl erfasst den Textstrom und speichert ihn
im Programmspeicher. Er kann auch zum direkten Eingeben eines kleinen
Programms über die Konsoleneingabe verwendet werden.

Dieser Modus wird durch Eingabe von Strg-Z oder F1 beendet, wodurch die
empfangenen Daten in den Programmspeicher übertragen werden und das
vorherige Programm überschreiben. Mit F2 kannst du den Modus verlassen
und das Programm sofort ausführen.

Die Option CRUNCH weist MMBasic an, vor dem Speichern alle
Kommentare, Leerzeilen und unnötigen Leerzeichen aus dem Programm zu
entfernen. Dies kann bei großen Programmen verwendet werden, damit sie in
den begrenzten Speicher passen. CRUNCH kann mit dem einzelnen
Buchstaben C abgekürzt werden.

Die Option APPEND lässt das vorhandene Programm unverändert und hängt
die neuen Daten aus der seriellen Eingabe an dessen Ende an.

Die Option N führt die automatische Speicherung wie gewohnt aus, gibt die
Daten aber nicht an die Konsole zurück. Sie wartet auf das Senden des ersten
Zeichens und verwendet dann einen Timer, der
überprüft, ob zwischen den Zeichen mehr als 100 ms liegen. Wenn diese
Verzögerung festgestellt wird, wechselt das Programm zurück in den normalen
Eingabemodus und gibt die Meldung
„Enter ctrl-Z, F1 oder F2 zum Beenden“
Du kannst dann weitere Zeichen eingeben, die gespeichert werden sollen, oder
einen der normalen Befehle zum Beenden verwenden.

Dieser Befehl kann jederzeit mit Strg-C abgebrochen werden, wodurch der
Programmspeicher unverändert bleibt.

BACKLIGHT n [,DEFAULT]

HINTERGRUNDBELEUCHT
UNG n [,FreqInHz]

NICHT-VGA- ODER HDMI-VERSIONEN

Stellt die Hintergrundbeleuchtung des Displays ein, gültige Werte sind 0 bis
100. Wenn DEFAULT angegeben ist, stellt die Firmware die
Hintergrundbeleuchtung beim Einschalten automatisch auf diesen Wert ein.
Das ist besonders nützlich im Batteriebetrieb, wo eine Reduzierung der
Hintergrundbeleuchtung die Batterielebensdauer erheblich verlängern kann.

Einige Schaltungen sind zu langsam, um die Standard-PWM-Frequenz der
Hintergrundbeleuchtung zu verwenden, die gewählt wurde, um Störungen des
Audiosignals zu vermeiden. In diesem Fall kann eine Benutzerfrequenz
angegeben werden. Dies ist eine temporäre Option, die bei jedem Neustart neu
eingestellt werden muss.

BEZIER x%(),y%() [,n]
[,Farbe]

Zeichnet eine Bezier-Kurve mit einer unbegrenzten Anzahl von
Kontrollpunkten. „x%()” und „y%()” sind eindimensionale Integer-Arrays, die
die Koordinaten der Kontrollpunkte enthalten. Die Bezier-Kurve beginnt
immer am ersten Kontrollpunkt. Die Arrays müssen die gleiche Dimension
haben.

Der optionale Parameter „n” legt fest, wie viele Kontrollpunkte für die
Darstellung verwendet werden sollen. Wenn er weggelassen wird, bestimmen
die Größe von „x%()” und „y%()” die Anzahl. N muss >=2 und <= der Array-
Größe sein.

Der optionale Parameter „colour“ sagt, in welcher Farbe die Kurve gezeichnet
wird (standardmäßig weiß).

PicoMite Benutzerhandbuch Seite 129

BIT(var%, bitno) = Wert Setzt ein bestimmtes Bit (0-63) in einer ganzzahligen Variablen. „Wert“ kann 0
oder 1 sein.

Siehe auch die Funktion BIT.

BITBANG Wurde durch den Befehl DEVICE ersetzt. Aus Kompatibilitätsgründen kann
BITBANG weiterhin in Programmen verwendet werden und wird automatisch
in DEVICE umgewandelt.

BLIT BLIT ist eine einfache Speicheroperation, bei der Daten von einem Display
oder Speicher auf ein Display oder einen Speicher kopiert werden.
Hinweise:

 Es stehen 32 Puffer von #1 bis #32 zur Verfügung.
 Bei der Angabe der Puffernummer ist das Symbol # optional.
 Alle anderen Argumente sind in Pixeln angegeben.

BLIT READ [#]b, x, y, w, h BLIT READ kopiert einen Teil der Anzeige in den Speicherpuffer '#b'. Die
Quellkoordinaten sind 'x' und 'y', die Breite des zu kopierenden
Anzeigebereichs ist 'w' und die Höhe ist 'h'. Bei Verwendung dieses Befehls
wird der Speicherpuffer automatisch erstellt und ausreichend Speicher
zugewiesen. Dieser Puffer kann mit dem Befehl BLIT CLOSE freigegeben und
der Speicher zurückgewonnen werden.

BLIT WRITE [#]b, x, y
[,mode]

BLIT WRITE kopiert den Speicherpuffer '#b' auf die Anzeige. Die
Zielkoordinaten sind 'x' und 'y'.
Der optionale Parameter „mode” ist standardmäßig auf 0 gesetzt und legt fest,
wie die gespeicherten Bilddaten beim Schreiben geändert werden. Es ist das
bitweise AND der folgenden Werte:

&B001 = von links nach rechts gespiegelt
&B010 = von oben nach unten gespiegelt
&B100 = transparente Pixel nicht kopieren

BLIT LOAD[BMP] [#]b,
fname$ [,x] [,y] [,w] [,h]

BLIT LOAD lädt einen Blit-Puffer aus einer 24-Bit-BMP-Bilddatei. x und y
legen die Startposition im Bild fest, an der das Laden beginnen soll, und w und
h geben die Breite und Höhe des zu ladenden Bereichs an. Dieser Befehl
funktioniert auf den meisten Anzeigetafeln (nicht nur auf Tafeln mit dem
ILI9341-Controller).
Beispiel:

BLIT LOAD #1,"image1", 50,50,100,100
lädt einen Bereich von 100 Pixeln im Quadrat mit der oberen linken Ecke bei
50,50 aus dem Bild image1.bmp

BLIT CLOSE [#]b BLIT CLOSE schließt den Speicherpuffer „#b”, damit er für einen anderen
BLIT READ-Vorgang genutzt werden kann und der verwendete Speicher
wiederhergestellt wird.

BLIT MERGE Farbe, x, y, w,
h

NICHT VGA- ODER HDMI-VERSIONEN

Kopiert einen Bereich des Framebuffers, der durch die Pixelkoordinaten „x”
und „y” der oberen linken Ecke definiert ist und eine Breite von „w” und eine
Höhe von „h” hat, auf das LCD-Display. Als Teil des Kopiervorgangs
überlagert es das LCD-Display mit Pixeln aus dem Layer-Puffer, die nicht auf
die angegebene „Farbe” eingestellt sind. Die Farbe wird als Zahl zwischen 0
und 15 angegeben, die Folgendes darstellt:

Schwarz, Blau, Myrte, Kobalt, Mittelgrün, Cerulean, Grün, Cyan, Rot,
Magenta, Rost, Fuchsia, Braun, Flieder, Gelb und Weiß

Für den Betrieb müssen sowohl ein Framebuffer als auch ein Layer-Puffer
erstellt worden sein. Wartet automatisch auf die Bildausblendung, bevor der
Kopiervorgang auf ILI9341-, ST7789_320- und ILI9488-Displays gestartet
wird.

Seite130 PicoMite-Benutzerhandbuch

BLIT FRAMEBUFFER from,
to, xin, yin, xout, yout, width,
height [,colour]

Kopiert einen Bereich eines bestimmten „from”-Framebuffers N, F oder L in
einen anderen „to”-Framebuffer N, F oder L. „xin” und „yin” legen die obere
linke Ecke des Bereichs „width” und „height” auf dem Quell-Framebuffer fest,
der kopiert werden soll. „xout” und „yout” zeigen die linke obere Ecke des
Bereichs auf dem Ziel-Framebuffer an, der die Kopie bekommen soll. Der
optionale Parameter „colour” gibt eine Pixelfarbe auf der Quelle an, die nicht
kopiert wird. Wenn er weggelassen wird, werden alle Pixel kopiert. Die Farbe
wird als Zahl zwischen 0 und 15 angegeben, die Folgendes bedeutet:

Schwarz, Blau, Myrte, Kobalt, Mittelgrün, Cerulean, Grün, Cyan, Rot,
Magenta, Rost, Fuchsia, Braun, Flieder, Gelb und Weiß

Für die Ausführung müssen sowohl ein Framebuffer als auch ein Layer-Buffer
erstellt worden sein. Bei ILI9341-, ST7789_320- und ILI9488-Displays wird
automatisch auf die Bildausblendung gewartet, bevor mit dem Kopieren
begonnen wird.

BLIT MEMORY Adresse, x, y
[,col]

Kopiert einen Speicherbereich, der als gepacktes Array von Farbnibbles
behandelt wird, in die aktuelle Grafikausgabe, wie durch FRAMEBUFFER
WRITE angegeben. Die Farbe wird als Zahl zwischen 0 und 15 angegeben, die
Folgendes darstellt:

Schwarz, Blau, Myrte, Kobalt, Mittelgrün, Cerulean, Grün, Cyan, Rot,
Magenta, Rost, Fuchsia, Braun, Flieder, Gelb und Weiß

Das erste Wort des Speicherbereichs, der bei „Adresse%” anfängt, muss die
Breite und Höhe des zu kopierenden Bereichs als 16-Bit-Ganzzahlen enthalten,
wobei die Breite die unteren 16 Bits sind. Die Adresse muss an einer
Wortgrenze ausgerichtet sein (durch 4 teilbar).

Wenn der optionale Parameter „col” angegeben wird, wird diese bestimmte
Farbe nicht kopiert.

Wenn das oberste Bit der Breite oder Höhe auf 1 gesetzt ist, werden die
Farbdaten als komprimiert behandelt (die restlichen 15 Bits werden als Breite
und/oder Höhe verwendet). Der Komprimierungsalgorithmus ist einfach: Jedes
Byte enthält eine Zählung im unteren Nibble (1–15) und eine Farbe im oberen
Nibble (0–15). Wenn mehr als 15 Pixel dieselbe Farbe haben, werden
zusätzliche Bytes für diese Farbe verwendet.

BLIT COMPRESSED Adresse
%, x, y [,col]

Funktioniert genauso wie BLIT MEMORY, geht aber davon aus, dass die
Daten komprimiert sind, und ignoriert das oberste Bit in der Breite und Höhe.

BLIT FLASH from, to, xin,
yin, xout, yout, width, height
[,colour]

Kopiert einen Bereich eines bestimmten „from”-Flash-Slots in einen „to”-
Framebuffer N, F oder L. „xin” und „yin” legen die obere linke Ecke des
Bereichs mit der „width” und „height” auf dem Flash-Slot fest, der kopiert
werden soll.

„xout” und „yout” sagen, wo oben links der Bereich auf dem Ziel-Framebuffer
ist, der die Kopie bekommen soll.

Der optionale Parameter „Farbe” sagt, welche Pixelfarbe im Flash-Slot nicht
kopiert werden soll. Wenn das weggelassen wird, werden alle Pixel kopiert.
Die Farbe wird als Zahl zwischen 0 und 15 angegeben, die Folgendes bedeutet:
Schwarz, Blau, Myrte, Kobalt, Mittelgrün, Cerulean, Grün, Cyan, Rot,
Magenta,
Rostrot, Fuchsia, Braun, Flieder, Gelb und Weiß

PicoMite Benutzerhandbuch Seite 131

BLIT x1, y1, x2, y2, w, h Kopiere einen Teil des Bildschirms in einen anderen Teil des Bildschirms.

Die Quellkoordinaten sind „x1” und „y1”. Die Zielkoordinaten sind „x2” und
„y2”. Die Breite des zu kopierenden Bildschirmbereichs ist „w” und die Höhe
ist „h”.

Alle Argumente sind in Pixeln angegeben.

Wenn die Ausgabe auf einem LCD-Bildschirm angezeigt werden soll, muss es
sich um einen der folgenden Controller handeln: SSD19863, ILI9341_8,
ILI9341, ILI9488 (wenn MISO angeschlossen) oder ST7789_320.

BOX x, y, w, h [, lw] [,c]
[,fill]

Zeichnet ein Feld auf dem Display mit der oberen linken Ecke bei „x” und „y”
mit einer Breite von „w” Pixeln und einer Höhe von „h” Pixeln.

„lw” ist die Breite der Seiten des Kastens und kann Null sein. Der
Standardwert ist 1.

„c” gibt die Farbe an und ist standardmäßig die Standard-Vordergrundfarbe,
wenn nichts anderes angegeben ist. „fill” ist die Füllfarbe. Sie kann
weggelassen oder auf -1 gesetzt werden, dann wird das Feld nicht gefüllt.

Alle Parameter können als Arrays angegeben werden, und die Software
zeichnet die Anzahl der Kästchen, die durch die Abmessungen des kleinsten
Arrays bestimmt wird. „x” und „y” müssen beide Arrays oder einzelne
Variablen/Konstanten sein, sonst wird ein Fehler ausgegeben. „w”, „h”, „lw”,
„c” und „fill” können entweder Arrays oder einzelne Variablen/Konstanten
sein.

Eine Definition der Farben und Grafikkoordinaten findest du im Kapitel
„Grafikbefehle und -funktionen”.

BYTE(var$, byteno)=value Setzt ein bestimmtes Byte in einer Zeichenfolge auf einen ganzzahligen Wert.
„Wert“ kann im Bereich von 0 bis 255 liegen. Die Byte-Nummer kann
zwischen 1 und der aktuellen Länge der Zeichenfolgenvariablen liegen. Dies
entspricht MID$(var$,byteno,1)=CHR$(value), wird jedoch viel schneller
ausgeführt.

Siehe auch die Funktion BYTE.

CALL usersubname$
[,usersubparameters,..]

Das ist eine coole Möglichkeit, benutzerdefinierte Unterprogramme
programmgesteuert aufzurufen (siehe auch die Funktion CALL()). Oft kannst
du damit komplizierte SELECT- und IF THEN ELSEIF ENDIF-Klauseln
vermeiden und es wird viel effizienter verarbeitet.

„usersubname$” kann eine beliebige Zeichenfolge, Variable oder Funktion
sein, die zum Namen einer normalen Benutzer-Subroutine (kein integrierter
Befehl) aufgelöst wird. Die „usersubparameters” sind die gleichen Parameter,
die auch beim direkten Aufruf der Unterroutine verwendet würden. Eine
typische Anwendung wäre das Schreiben einer beliebigen Art von Emulator,
bei dem eine von vielen Unterroutinen in Abhängigkeit von einer Variablen
aufgerufen werden soll. Außerdem bietet sie die Möglichkeit, einen
Unterroutinenamen als Variable an eine andere Unterroutine oder Funktion zu
übergeben.

KAMERA

NICHT VGA- ODER HDMI-VERSIONEN

Befehl zur Unterstützung des OV7670-Kameramoduls.

Seite132 PicoMite-Benutzerhandbuch

CAMERA OPEN XLKpin,
PLKpin, HSpin, VSCpin,
RETpin, D0pin

Damit wird die Kamera initialisiert. Es wird ein 12-MHz-Takt auf XLK
(PWM) ausgegeben und überprüft, ob die Signale auf PLK, VS und HS richtig
empfangen werden. Die Kamera wird auf eine Auflösung von 160 x 120
(QQVGA) eingestellt, was das Maximum ist, das mit dem verfügbaren
Speicher möglich ist.

Aktivieren Sie OPTION SYSTEM I2C in der PicoMite-Firmware und
verbinden Sie SCL und SDA mit den entsprechenden Pins (auf dem
Kameramodul möglicherweise mit SIOC und SIOD gekennzeichnet). Diese
Verbindungen müssen einen Pullup auf 3,3 V haben – empfohlen wird 2K7.

Andere Pins werden gemäß dem Befehl OPEN verdrahtet. (Hinweis: VS kann
auf Ihrem Modul als VSYNC, HS als HREF, PLK als PCLK, RET als RESET
und XLK als XCLK gekennzeichnet sein.

D0pin legt den Anfang eines Bereichs von 8 aufeinanderfolgenden Pins fest (z.
B. GP0 – GP7).

KAMERA-AUFNAHME
[Skala, [x , y]]

Damit wird ein Bild von der Kamera (RGB565) aufgenommen und auf einem
LCD-Bildschirm angezeigt. Damit der Befehl funktioniert, muss ein SPI-LCD
angeschlossen und aktiviert sein. (ILI9341 und ST7789_320 werden
empfohlen).

Die Skalierung ist standardmäßig auf 1 und x, y jeweils auf 0 eingestellt.

Standardmäßig wird ein Bild mit einer Größe von 160 x 120 auf dem LCD-
Bildschirm ausgegeben, wobei die obere linke Ecke bei 0,0 auf dem LCD-
Bildschirm liegt. Wenn du den Maßstab auf 2 setzt, wird das Bild auf einem
320 x 240 Display angezeigt. Durch Einstellen der Parameter x und y wird die
obere linke Ecke des Bildes auf dem LCD-Bildschirm versetzt.

Die Aktualisierungsrate in einer Endlosschleife beträgt 7 FPS auf dem Display
im Maßstab 1:1 und 5 FPS skaliert auf 320 x 240.

Wenn das Display über MISO verkabelt ist, kann das Bild mit dem Befehl
SAVE IMAGE auf der Festplatte gespeichert werden.

CAMERA CLOSE Schließt das Kamerasubsystem und gibt alle im Befehl OPEN zugewiesenen
Pins frei.

CAMERA CHANGE image%
(),change! [,scale [,x ,y]]

Die Kamera-Firmware kann mit diesem Befehl auch Bewegungen im Sichtfeld
der Kamera erkennen. Dazu wird die Kamera im YUV-Modus statt im RGB-
Modus betrieben. Das hat den Vorteil, dass die Intensitäts- und
Farbinformationen getrennt sind und nur ein Byte für ein Graustufenbild mit
256 Stufen benötigt wird, was ideal für die Bewegungserkennung ist.

image% ist ein Array der Größe 160x120 Bytes (DIM image%(160,120/8-1)

Beim Aufruf des Befehls enthält es ein gepacktes 8-Bit-Graustufenbild.

Die Variable change! gibt den Prozentsatz zurück, um den sich das Bild seit
dem letzten Aufruf des Befehls verändert hat.

Wenn „scale” eingestellt ist, wird optional das Bilddelta auf dem Bildschirm
angezeigt, also der Unterschied zwischen dem vorherigen Bild und diesem.
Wie beim Befehl CAPTURE kann das Delta-Bild nach Bedarf skaliert und
positioniert werden. Wenn der Parameter „scale” weggelassen wird, wird das
LCD durch diesen Befehl nicht aktualisiert.

KAMERATEST tnum Aktiviert oder deaktiviert ein Testsignal von der Kamera. tnum=2 erzeugt
Farbbalken und tnum=0 stellt die visuelle Eingabe wieder her.

PicoMite Benutzerhandbuch Seite 133

KAMERA-REGISTER reg%,
data%

Setzt das Register „reg%” in der Kamera auf den Wert „data%”. Bei
Verwendung meldet der Befehl den vorherigen Wert an die Konsole und
bestätigt automatisch, dass der neue Wert wie gewünscht gesetzt wurde. Die
Farbwiedergabe der Kamera ist nach der Initialisierung angemessen, könnte
aber wahrscheinlich durch die Einstellung der verschiedenen Kameraregister
noch weiter verbessert werden.

CAT S$, N$ Verbindet die Zeichenfolgen, indem N$ an S$ angehängt wird. Das ist im
Grunde dasselbe wie S$ = S$ + N$, läuft aber etwas schneller.

CHAIN fname$ [cmdline$] Ermöglicht es einem Programm, ein anderes Programm auszuführen, wobei der
Variablenbereich erhalten bleibt – es wird empfohlen, den Befehl in einem
Programm der obersten Ebene und nicht innerhalb einer Subroutine zu
verwenden. Wenn der optionale Parameter „cmdline$“ angegeben ist, wird
dieser in MM.CMDLINE$ an das verkettete Programm übergeben.

CHDIR dir$ Ändert das aktuelle Arbeitsverzeichnis auf dem Standardlaufwerk zu „dir$”.

Der spezielle Eintrag „.“ steht für das übergeordnete Verzeichnis des aktuellen
Verzeichnisses und „.“ für das aktuelle Verzeichnis. „/“ ist das
Stammverzeichnis.

CIRCLE x, y, r [,lw] [, a] [,
c] [, fill]

Zeichnet einen Kreis mit dem Mittelpunkt 'x' und 'y' und dem Radius 'r' auf
dem Bildschirm. 'lw' ist optional und steht für die Linienbreite (Standardwert
ist 1).

 „c“ ist die optionale Farbe und ist standardmäßig die aktuelle
Vordergrundfarbe, wenn nichts anderes angegeben wird. Das optionale „a“ ist
eine Fließkommazahl, die das Seitenverhältnis festlegt. Wenn das
Seitenverhältnis nicht angegeben wird, ist der Standardwert 1,0, was einen
Standardkreis ergibt. „fill“ ist die Füllfarbe und kann weggelassen oder auf -1
gesetzt werden, wodurch das Feld nicht gefüllt wird.

Alle Parameter können als Arrays angegeben werden, und die Software
zeichnet die Anzahl der Kreise, die durch die Abmessungen des kleinsten
Arrays bestimmt wird. 'x',

„y” und „r” müssen entweder Arrays oder einzelne Variablen/Konstanten sein,
sonst kommt es zu einem Fehler. „lw”, „a”, „c” und „fill” können entweder
Arrays oder einzelne Variablen/Konstanten sein.

Eine Definition der Farben und Grafikkoordinaten findest du im Kapitel
„Grafikbefehle und -funktionen”.

CLEAR Löscht alle Variablen und gibt den von ihnen belegten Speicher frei.

Siehe ERASE zum Löschen bestimmter Array-Variablen.

CLOSE [#]fnbr [,[#]fnbr] … Schließ die Datei(en), die du vorher mit der Dateinummer „#fnbr“ geöffnet
hast. Das # ist optional. Sieh dir auch den Befehl OPEN an.

CLS [Farbe] Löscht den Bildschirm des LCD-Panels. Optional kann „Farbe“ angegeben
werden, die beim Löschen des Bildschirms als Hintergrundfarbe verwendet
wird.

CMM2 LOAD

oder

CMM2 RUN

Lädt und/oder führt ein Programm von der Festplatte mit dem CMM2-
Programmlademodus aus. Das beinhaltet eine aggressive Komprimierung des
Programms und unterstützt #INCLUDE-Dateien und #DEFINE-
Textersetzungen. Dies kann zur Kompatibilität mit CMM2-Programmen oder
zur Strukturierung von Programmen in separate Module verwendet werden. Es
ist wichtig zu beachten, dass bei Verwendung alle Bearbeitungen von
Programmen offline oder direkt von und auf die Festplatte erfolgen müssen, da
die Quelldateien aus der mit diesen Befehlen geladenen Version nicht

Seite134 PicoMite-Benutzerhandbuch

rekonstruiert werden können.

COLOUR fore [, back]
oder
COLOR fore [, back]

Legt die Standardfarbe für Befehle (PRINT usw.) fest, die auf dem
angeschlossenen LCD-Bildschirm angezeigt werden. „fore” ist die
Vordergrundfarbe, „back” ist die Hintergrundfarbe. Der Hintergrund ist
optional und wird, wenn nicht angegeben, standardmäßig auf eine zuvor
festgelegte Hintergrundfarbe oder, falls zuvor nicht geändert, auf Schwarz
gesetzt.

COLOUR MAP inarray%(),
outarray%() [,colourmap%()]

Dieser Befehl erzeugt RGB888-Farben in outarray% aus den Farbcodes (0-15)
in inarray%. Wenn der optionale Parameter colourmap% verwendet wird, muss
dieser 16 Elemente lang sein. In diesem Fall werden die Werte in inarray% den
Farben für diesen Indexwert in colourmap% zugeordnet.

CONFIGURE cfg

LISTE KONFIGURIEREN

Konfiguriert eine Karte gemäß dem in „cfg” angegebenen Äquivalent von
OPTION RESET.

Listet alle verschiedenen Konfigurationen auf, die für die Firmware-Version
verfügbar sind.

CONST id = Ausdruck
 [, id = Ausdruck] … usw.

Erstellt eine Konstante, die nach dem Erstellen nicht mehr geändert werden
kann.

„id” ist der Bezeichner, der denselben Regeln wie Variablen folgt. Der
Bezeichner kann ein Typ-Suffix (!, % oder $) haben, das aber nicht
erforderlich ist. Wenn es angegeben wird, muss es mit dem Typ von
„Ausdruck” übereinstimmen. „Ausdruck” ist der Wert des Bezeichners und
kann ein normaler Ausdruck (einschließlich benutzerdefinierter Funktionen)
sein, der bei der Erstellung der Konstante ausgewertet wird.

Eine außerhalb einer Subroutine oder Funktion definierte Konstante ist global
und im gesamten Programm sichtbar. Eine innerhalb einer Subroutine oder
Funktion definierte Konstante ist lokal für diese Routine und verdeckt eine
globale Konstante mit demselben Namen.

CONTINUE Setzt die Ausführung eines Programms fort, das durch eine END-Anweisung,
einen Fehler oder STRG-C angehalten wurde. Das Programm wird mit der
nächsten Anweisung nach dem vorherigen Haltepunkt neu gestartet.

Beachte, dass es nicht immer möglich ist, das Programm korrekt fortzusetzen –
das gilt vor allem für komplexe Programme mit Grafiken, verschachtelten
Schleifen und/oder verschachtelten Unterprogrammen und Funktionen.

CONTINUE DO

oder

CONTINUE FOR

Springe zum Ende einer DO/LOOP- oder einer FOR/NEXT-Schleife. Die
Schleifenbedingung wird dann geprüft und wenn sie noch gültig ist, wird die
Schleife mit der nächsten Iteration fortgesetzt.

COPY fname1$ TO fname2$

COPY fname$ TO dirname$

Kopiere eine Datei von „fname1$” nach „fname2$”. Beide sind Zeichenfolgen.

Sowohl in „fname$” als auch in „fname$” kann ein Verzeichnispfad verwendet
werden. Wenn die Pfade unterschiedlich sind, wird die in „fname$”
angegebene Datei mit dem angegebenen Dateinamen in den in „fname2$”
angegebenen Pfad kopiert. Die Dateinamen können die Laufwerksangabe
enthalten, wenn du auf ein nicht aktives Laufwerk kopierst oder von einem
nicht aktiven Laufwerk kopierst (siehe Befehl DRIVE).

Kopieren mit Platzhaltern. Die Massenkopie wird ausgelöst, wenn fname$ ein
„*“- oder ein „?“-Zeichen enthält. dirname$ muss ein gültiger
Verzeichnisname sein und darf NICHT mit einem Schrägstrich enden.

PicoMite Benutzerhandbuch Seite 135

CPU RESTART Löst einen Neustart der Prozessoren aus.

Dadurch werden alle Variablen gelöscht und alles zurückgesetzt (z. B. Timer,
COM-Ports, I2C usw.), ähnlich wie beim Einschalten, jedoch ohne den
Startbildschirm.

Wenn die OPTION AUTORUN gesetzt wurde, wird das Programm an der
angegebenen Flash-Position oder im Programmspeicher neu gestartet.

CPU-RUHEZUSTAND n Versetzt die Prozessoren für „n“ Sekunden in den Ruhezustand. Beachte, dass
die CPU keinen echten Energiesparmodus hat, sodass die Energieeinsparung
begrenzt ist.

CSUB name [type [, type]
…]

 hex [[hex[…]

 hex [[hex[…]

END CSUB

Definiert den Binärcode für ein eingebettetes Maschinencode-
Programmmodul, das in C oder ARM-Assembler geschrieben ist. Das Modul
erscheint in MMBasic als Befehl „name” und kann wie ein integrierter Befehl
verwendet werden.

In einem Programm können mehrere eingebettete Routinen verwendet werden,
wobei jede ein anderes Modul mit einem anderen „name” definiert.

Das erste „Hex“-Wort ist ein 32-Bit-Wort, das den Offset in Bytes vom Anfang
des CSUB bis zum Einstiegspunkt der eingebetteten Routine (normalerweise
die Funktion main()) angibt. Die folgenden Hex-Wörter sind der kompilierte
Binärcode für das Modul. Diese werden beim Speichern des Programms
automatisch in MMBasic programmiert. Jedes „Hex“ muss genau acht
Hexadezimalziffern haben, die die Bits in einem 32-Bit-Wort darstellen, und
durch ein oder mehrere Leerzeichen oder Zeilenumbrüche getrennt sein. Der
Befehl muss mit einem passenden END CSUB beendet werden. Fehler im
Datenformat werden bei der Ausführung des Programms gemeldet. Während
der Ausführung überspringt MMBasic alle CSUB-Befehle, sodass sie an
beliebiger Stelle im Programm platziert werden können.

Der Typ jedes Parameters kann in der Definition angegeben werden. Zum
Beispiel:

CSUB MySub integer, integer, string

Dies gibt an, dass es drei Parameter gibt, wobei die ersten beiden Ganzzahlen
und der dritte eine Zeichenfolge sind.

Hinweis:

 Es können bis zu zehn Argumente angegeben werden („arg1”, „arg2”
usw.).

 Wenn eine Variable oder ein Array als Argument angegeben wird,
bekommt die C-Routine einen Zeiger auf den Speicher, der der Variable
oder dem Array zugewiesen ist, und die C-Routine kann diesen Speicher
ändern, um einen Wert an den Aufrufer zurückzugeben. Bei Arrays
sollten sie mit leeren Klammern übergeben werden, z. B. arg(). In der
CSUB wird das Argument als Zeiger auf das erste Element des Arrays
bereitgestellt.

 Konstanten und Ausdrücke werden als Zeiger auf einen temporären
Speicherplatz, der den Wert enthält, an die eingebettete C-Routine
übergeben.

DATA
Konstante[,Konstante]..

Speichert numerische Konstanten und Zeichenfolgenkonstanten, auf die mit
READ zugegriffen werden kann.

Im Allgemeinen sollten Zeichenfolgenkonstanten in doppelte
Anführungszeichen ("") gesetzt werden. Eine Ausnahme besteht, wenn die
Zeichenfolge nur aus alphanumerischen Zeichen besteht, die keine MMBasic-
Schlüsselwörter darstellen (wie THEN, WHILE usw.). In diesem Fall sind
Anführungszeichen nicht erforderlich.

Numerische Konstanten können auch Ausdrücke wie 5 * 60 sein.

Seite136 PicoMite-Benutzerhandbuch

DATE$ = "DD-MM-YY[YY]"
oder
DATE$ = "DD/MM/YY[YY]"
oder
DATE$ =”YYYY-MM-DD”
oder
DATE$ = „JJJJ/MM/TT”

Stell das Datum der internen Uhr/des internen Kalenders ein.

DD, MM und YY sind Zahlen, zum Beispiel: DATE$ = "28-7-2014"

Mit OPTION RTC AUTO ENABLE startet die PicoMite-Firmware mit dem in
RTC programmierten DATE$.
Ohne OPTION RTC AUTO ENABLE startet die PicoMite-Firmware beim
Einschalten mit dem Datum „01-01-2024”.

DEFINEFONT #Nbr

 hex [[hex[…]

 hex [[hex[…]

END DEFINEFONT

Damit wird eine eingebettete Schriftart definiert, die zusammen mit den
integrierten Schriftarten auf einem angeschlossenen LCD-Bildschirm
verwendet werden oder diese ersetzen kann. Diese funktionieren genauso wie
die integrierten Schriftarten (d. h. sie werden mit dem Befehl FONT
ausgewählt oder im Befehl TEXT angegeben). Eine Auswahl eingebetteter
Schriftarten und eine vollständige Beschreibung ihrer Erstellung findest du im
Ordner „Embedded Fonts” in der ZIP-Datei mit der PicoMite-Firmware.

„#Nbr” ist die Referenznummer der Schriftart (von 1 bis 16). Sie kann mit
einer integrierten Schriftart übereinstimmen. In diesem Fall ersetzt sie die
integrierte Schriftart. Jedes „Hex” muss genau acht Hexadezimalziffern
umfassen und durch Leerzeichen oder Zeilenumbrüche vom nächsten getrennt
sein.

 Es können mehrere Zeilen mit „hex”-Wörtern verwendet werden, wobei
der Befehl mit einem passenden END DEFINEFONT beendet wird.

 In einem Programm können mehrere eingebettete Schriftarten verwendet
werden, wobei jede eine andere Schriftart mit einer anderen
Schriftartnummer definiert.

 Während der Ausführung überspringt MMBasic alle DEFINEFONT-
Befehle, sodass sie an beliebiger Stelle im Programm platziert werden
können.

 Fehler im Datenformat werden beim Speichern des Programms gemeldet.

DEVICE BITSTREAM pinno,
n_transitions, array%()

Dieser Befehl wird verwendet, um eine extrem genaue Bitsequenz auf dem
angegebenen Pin zu erzeugen. Der Pin muss zuvor als Ausgang eingerichtet
und auf den erforderlichen Startpegel eingestellt worden sein.

Hinweise:

 Das Array enthält die Länge jedes Pegels im Bitstrom in
Mikrosekunden. Die maximal zulässige Periode beträgt 65,5 ms.

 Der erste Übergang passiert sofort, wenn der Befehl ausgeführt wird.
 Die letzte Periode im Array wird ignoriert, außer zur Definition der Zeit,

bevor die Steuerung zum Programm oder zur Befehlszeile zurückkehrt.
 Der Pin bleibt im Startzustand, wenn die Anzahl der Übergänge gerade

ist, und im entgegengesetzten Zustand, wenn die Anzahl der Übergänge
ungerade ist.

DEVICE CAMERA Siehe Befehl CAMERA

GERÄT GAMEPAD Siehe Befehl GAMEPAD

GERÄT HUMID Schau mal unter dem Befehl HUMID nach

GERÄT KEYPAD Schau mal den Befehl KEYPAD an

DEVICE MOUSE Schau mal unter dem Befehl MOUSE nach

GERÄT LCD Siehe Befehl LCD

PicoMite Benutzerhandbuch Seite 137

DEVICE SERIALTX pinno,
Baudrate, ostring$

Gibt „ostring$“ als seriellen Datenstrom auf „pinno“ aus. „baudrate“ kann
zwischen 110 und 230400 liegen (für 230400 muss die CPU möglicherweise
übertaktet werden).

Beachte, dass das Programm während der Übertragung angehalten wird und
Unterbrechungen ignoriert werden.

DEVICE SERIALRX pinno,
baudrate, istring$,
timeout_in_ms, status% [,nbr]
[,terminators$]

Gibt serielle Daten auf „pinno” ein. „baudrate” kann zwischen 110 und 230400
liegen (für 230400 muss die CPU möglicherweise übertaktet werden).

„status%” gibt Folgendes zurück:

-1 = Zeitüberschreitung (Hinweis: Verwende LEN(istring$), um die
Anzahl der empfangenen Zeichen anzuzeigen)
 2 = Anzahl der angeforderten Zeichen erreicht
 3 = Endzeichen erfüllt

„nbr“ gibt die Anzahl der Zeichen an, die empfangen werden müssen, bevor
der Befehl zurückkehrt. „terminators$“ gibt ein oder mehrere einzelne Zeichen
an, die zum Beenden des Empfangs verwendet werden können.

Das Programm wird angehalten und Unterbrechungen werden ignoriert,
während dieser Befehl ausgeführt wird.

DEVICE WII Siehe Befehl WII

GERÄT WS2812 Siehe WS2812-Befehl

DIM [Typ] decl [,decl]..

wobei „decl” Folgendes ist:

var [Länge] [Typ] [init]

„var” ist ein Variablenname
mit optionalen Dimensionen

„length” wird benutzt, um die
maximale Größe der
Zeichenfolge auf „n” zu
setzen, wie in LENGTH n

„type” ist entweder FLOAT
oder
INTEGER oder STRING (dem
Typ kann das Schlüsselwort
AS vorangestellt werden – wie
in AS FLOAT)

'init' ist der Wert, mit dem die
Variable initialisiert wird, und
besteht aus:
= <Ausdruck>

Für eine einfache Variable
wird ein Ausdruck verwendet,
für ein Array eine Liste von
durch Kommas getrennten
Ausdrücken, die in Klammern
stehen.

Beispiele:

DIM nbr(50)

DIM INTEGER nbr(50)

DIM name AS STRING

Deklariert eine oder mehrere Variablen (d. h. macht den Variablennamen und
seine Eigenschaften dem Interpreter bekannt).

Wenn OPTION EXPLICIT benutzt wird (was wir empfehlen), sind die Befehle
DIM, LOCAL oder STATIC die einzigen Möglichkeiten, eine Variable zu
erstellen. Wenn diese Option „ ” nicht benutzt wird, ist die Verwendung des
Befehls DIM optional, und wenn er nicht benutzt wird, wird die Variable
automatisch erstellt, wenn sie zum ersten Mal referenziert wird.

Der Typ der Variablen (also Zeichenfolge, Gleitkomma oder Ganzzahl) kann
auf drei Arten angegeben werden:

Durch Verwendung eines Typ-Suffixes (d. h. !, % oder $ für Float, Integer oder
String). Beispiel:

DIM nbr%, amount!, name$

Durch Verwendung eines der Schlüsselwörter FLOAT, INTEGER oder
STRING direkt nach dem Befehl DIM und vor der Auflistung der Variablen.
Der angegebene Typ gilt dann für alle aufgelisteten Variablen (d. h. er muss
nicht wiederholt werden). Beispiel:

DIM STRING first_name, last_name, city

Verwende die Microsoft-Konvention, bei der das Schlüsselwort „AS” und das
Typ-Schlüsselwort (also FLOAT, INTEGER oder STRING) nach jeder
Variablen steht. Wenn du diese Methode verwendest, musst du den Typ für
jede Variable angeben und kannst ihn von Variable zu Variable ändern.

Zum Beispiel:
DIM Betrag AS FLOAT, Name AS STRING

Gleitkomma- oder Ganzzahlvariablen werden bei ihrer Erstellung auf Null
gesetzt, und Zeichenfolgen werden auf eine leere Zeichenfolge (d. h. „“)
gesetzt. Du kannst den Wert der Variablen initialisieren, indem du ein
Gleichheitszeichen (=) und einen Ausdruck nach der Variablendefinition
verwendest. Beispiel:
 DIM STRING city = "Perth", house = "Brick"
Der Initialisierungswert kann ein Ausdruck sein (auch mit anderen Variablen)
und wird ausgewertet, wenn der DIM-Befehl ausgeführt wird. Weitere
Beispiele für die Syntax findest du im Kapitel „Variablen definieren und

Seite138 PicoMite-Benutzerhandbuch

DIM a, b$, nbr(100), strn$(20)

DIM a(5,5,5), b(1000)

DIM strn$(200) LÄNGE 20

DIM STRING strn(200)
LÄNGE 20

DIM a = 1234, b = 345

DIM STRING strn = "Text"

DIM x%(3) = (11, 22, 33, 44)

verwenden”.

Neben einfachen Variablen deklariert der Befehl DIM auch Array-Variablen
(also indizierte Variablen mit mehreren Dimensionen). Nach dem Namen der
Variablen werden die Dimensionen durch eine Liste von Zahlen angegeben, die
durch Kommas getrennt und in Klammern gesetzt sind. Zum Beispiel:

DIM array(10, 20)

Jede Zahl gibt den Indexbereich in jeder Dimension an. Normalerweise beginnt
die Indizierung jeder Dimension bei 0, aber mit dem Befehl OPTION BASE
kann dies auf 1 geändert werden.

Das obige Beispiel gibt ein zweidimensionales Array mit 11 Elementen (0 bis
10) in der ersten Dimension und 21 Elementen (0 bis 20) in der zweiten
Dimension an. Die Gesamtzahl der Elemente beträgt 231, und da jede
Gleitkommazahl 8 Byte benötigt, werden insgesamt 1848 Byte Speicher
zugewiesen.

Zeichenfolgen belegen standardmäßig 255 Byte (d. h. Zeichen) Speicherplatz
pro Element, was bei der Definition von Zeichenfolgen-Arrays schnell zu einer
hohen Speicherauslastung führen kann. In diesem Fall kann mit dem
Schlüsselwort LENGTH die jedem Element zuzuweisende Speichermenge und
damit die maximale Länge der zu speichernden Zeichenfolge angegeben
werden. Diese Zuweisung („n“) kann zwischen 1 und 255 Zeichen liegen.

Beispiel: DIM STRING s(5, 10) deklariert ein Zeichenfolgenarray mit
66 Elementen, das 16.896 Byte Speicherplatz verbraucht, während

DIM STRING s(5, 10) LENGTH 20

nur 1.386 Byte Speicherplatz verbraucht. Beachte, dass die jedem Element
zugewiesene Speichermenge n + 1 beträgt, da das zusätzliche Byte verwendet
wird, um die tatsächliche Länge der in jedem Element gespeicherten
Zeichenfolge zu verfolgen.

Wenn einem Element des Arrays eine Zeichenfolge zugewiesen wird, die
länger als „n“ ist, wird ein Fehler ausgegeben. Ansonsten verhalten sich mit
dem Schlüsselwort LENGTH erstellte Zeichenfolgen-Arrays genauso wie
andere Zeichenfolgen-Arrays. Dieses Schlüsselwort kann auch mit Nicht-
Array-Zeichenfolgenvariablen verwendet werden, spart jedoch keinen
Speicherplatz.

Im obigen Beispiel kannst du auch die Microsoft-Syntax verwenden, bei der
der Typ nach dem Längenqualifizierer angegeben wird. Zum Beispiel:

DIM s(5, 10) LENGTH 20 AS STRING
Der Längenparameter kann für einfache (nicht als Array definierte)
Zeichenfolgen mit den folgenden Einschränkungen verwendet werden: Beim
RP2040 wird eine Länge von mehr als 9 ignoriert und standardmäßig werden
255 Byte zugewiesen. Beim RP2350 wird eine Länge von mehr als 15 ignoriert
und standardmäßig 255 Byte zugewiesen. Wenn die Länge kleiner oder gleich
dem Grenzwert ist, wird die Zeichenfolge im Variablenheader gespeichert und
256 Byte werden eingespart. Dies ist wahrscheinlich besonders nützlich für
kurze konstante Zeichenfolgen.

Arrays können auch bei ihrer Deklaration initialisiert werden, indem am Ende
der Deklaration ein Gleichheitszeichen (=) gefolgt von einer in Klammern
gesetzten Liste von Werten hinzugefügt wird. Beispiel:

DIM INTEGER nbr(4) = (22, 44, 55, 66, 88)
oder DIM s$(3) = ("foo", "boo", "doo", "zoo")

Beachte, dass die Anzahl der Initialisierungswerte mit der Anzahl der Elemente
im Array übereinstimmen muss, einschließlich des durch OPTION BASE
festgelegten Basiswerts. Wenn ein mehrdimensionales Array initialisiert wird,
wird zuerst die erste Dimension initialisiert, dann die zweite usw.

Beachte auch, dass die Initialisierungswerte nach dem LENGTH-Qualifizierer
(falls verwendet) und nach der Typdeklaration (falls verwendet) stehen

PicoMite Benutzerhandbuch Seite 139

müssen.

DO
 <Anweisungen>
LOOP

Diese Struktur führt eine Endlosschleife aus. Mit dem Befehl EXIT DO kannst
du die Schleife beenden oder die Steuerung muss explizit mit Befehlen wie
GOTO oder EXIT SUB (in einer Subroutine) außerhalb der Schleife
übertragen werden.

DO WHILE Ausdruck
 <Anweisungen>
LOOP

Wiederholt die Schleife, solange „Ausdruck” wahr ist (dies entspricht der
älteren WHILE-WEND-Schleife). Wenn der Ausdruck zu Beginn falsch ist,
werden die Anweisungen in der Schleife nicht ausgeführt, auch nicht einmal.

DO
 <Anweisungen>
LOOP UNTIL Ausdruck

Wiederholt die Schleife, bis der Ausdruck nach UNTIL wahr ist. Weil die
Prüfung am Ende der Schleife gemacht wird, werden die Anweisungen in der
Schleife mindestens einmal ausgeführt, auch wenn der Ausdruck wahr ist.

DO
 <Anweisungen>
LOOP WHILE Ausdruck

Wiederholt die Schleife, bis der Ausdruck nach WHILE falsch ist. Da die
Prüfung am Ende der Schleife gemacht wird, werden die Anweisungen in der
Schleife mindestens einmal ausgeführt, auch wenn der Ausdruck falsch ist.

DRAW3D

NICHT IN DER WEBMITE-VERSION VERFÜGBAR

Die 3D-Engine hat Befehle zum Bearbeiten von 3D-Bildern, wie zum Beispiel
das Einstellen der Kamera, Erstellen, Ausblenden, Drehen usw.

Eine ausführliche Beschreibung findest du im Dokument
„3D_Graphics_User_Manual.pdf” im PicoMite-Firmware-Download.

DRIVE drive Legt das aktive Laufwerk als „drive$“ fest. „drive$“ kann „A:“ oder „B:“ sein,
wobei A das Flash-Laufwerk und B die SD-Karte ist, falls konfiguriert.

EDIT

oder

EDIT fname

oder

DATEI fname$
BEARBEITEN

Ruf den Vollbild-Editor auf.

Wenn du einen Dateinamen eingibst, lädt der Editor die Datei von der
aktuellen Festplatte (A: oder B:), damit du sie bearbeiten kannst, und speichert
sie beim Beenden mit F1 oder F2 auf der Festplatte. Wenn die Datei nicht da
ist, wird sie beim Beenden erstellt. Das aktuelle Programm, das im Flash-
Speicher gespeichert ist, bleibt davon unberührt. Wenn du eine vorhandene
Datei bearbeitest, wird beim Beenden auch eine Sicherungskopie mit der
Endung .bak erstellt.
Wenn fname$ eine andere Erweiterung als .bas enthält, wird die Farbcodierung
während der Bearbeitung vorübergehend deaktiviert.
Wenn keine Erweiterung angegeben ist, geht die Firmware von .bas aus.
Durch das Bearbeiten einer Datei von der Festplatte können Nicht-Basic-
Dateien wie HTML- oder Sprite-Dateien bearbeitet werden, ohne dass sie beim
Tokenisierungsprozess, der beim Speichern im Flash-Speicher stattfindet,
beschädigt werden.

EDIT und EDIT fname$ können nur über die Befehlszeile aufgerufen werden.

Wenn du eine Datei in einem Programm bearbeiten möchtest, kannst du den
Befehl EDIT FILE fname$ verwenden. Der Befehl muss im obersten
Programmlevel verwendet werden und nicht innerhalb einer Subroutine.

EDIT FILE fname$ unterscheidet sich von EDIT fname$ dadurch, dass es
automatisch den gesamten Variablenbereich auf dem Laufwerk A: speichert
und beim Beenden wiederherstellt. Der Befehl schlägt fehl, wenn auf dem
Laufwerk A: nicht genügend freier Speicherplatz vorhanden ist. Bei einem
RP2350 mit PSRAM wird der Variablenbereich in einem reservierten Bereich
im PSRAM gespeichert und das Laufwerk A: wird nicht verwendet.

Details zur Verwendung des Editors findest du im Kapitel Vollbild-Editor.

ELSE Fügt eine optionale Standardbedingung in eine mehrzeilige IF-Anweisung ein.

Mehr Infos findest du unter „Mehrzeilige IF-Anweisung”.

Seite140 PicoMite-Benutzerhandbuch

ELSEIF Ausdruck THEN

oder

ELSE IF Ausdruck THEN

Fügt eine optionale sekundäre Bedingung in eine mehrzeilige IF-Anweisung
ein.

Mehr Infos findest du unter der mehrzeiligen IF-Anweisung.

END [noend]

oder

END cmd$

Beendet das laufende Programm und kehrt zur Eingabeaufforderung zurück.
Wenn im Programm eine Subroutine namens MM.END vorhanden ist, wird
diese ausgeführt, sobald das Programm mit einem tatsächlichen oder
implizierten END-Befehl endet. Sie wird nicht ausgeführt, wenn das Programm
mit dem Abbruchzeichen (d. h. Strg-C) beendet wird.

Der optionale Parameter „noend” kann verwendet werden, um die Ausführung
der Unterroutine MM.END zu blockieren, z. B. „END noend”.

Wenn „cmd$” angegeben ist, wird es nach Beendigung des Programms wie an
der Eingabeaufforderung ausgeführt. Hinweis: Wenn „END cmd$” verwendet
wird, aber eine Unterroutine MM.END vorhanden ist, wird diese ausgeführt
und cmd$ ignoriert.

END CSUB Markiert das Ende einer C-Subroutine. Siehe den Befehl CSUB.

Jedes CSUB muss genau eine passende END CSUB-Anweisung haben.

END FUNCTION Markiert das Ende einer benutzerdefinierten Funktion. Siehe den Befehl
FUNCTION.

Jede Funktion muss genau eine passende END FUNCTION-Anweisung haben.
Verwende EXIT FUNCTION, wenn du aus einer Funktion innerhalb ihres
Körpers zurückkehren musst.

ENDIF

oder

END IF

Beendet eine mehrzeilige IF-Anweisung.

Weitere Infos findest du unter der mehrzeiligen IF-Anweisung.

END SUB Markiert das Ende einer benutzerdefinierten Subroutine. Sieh dir den Befehl
SUB an.

Jede Subroutine muss genau eine passende END SUB-Anweisung haben.
Verwende EXIT SUB, wenn du aus einer Subroutine innerhalb ihres Hauptteils
zurückkehren musst.

END TYPE Markiert das Ende einer benutzerdefinierten Struktur. Sieh dir den Befehl
TYPE an.

ERASE variable [,variable].. Löscht globale Variablen und gibt den ihnen zugewiesenen Speicher frei. Das
funktioniert mit Array-Variablen und normalen (Nicht-Array-)Variablen.
Arrays können mit leeren Klammern (z. B. dat()) oder einfach durch Angabe
des Variablennamens (z. B. dat) angegeben werden.

Verwende CLEAR, um alle Variablen gleichzeitig zu löschen (einschließlich
Arrays).

ERROR [Fehlermeldung$] Löst einen Fehler aus und beendet das Programm. Das wird normalerweise
beim Debuggen oder zum Abfangen von Ereignissen verwendet, die nicht
auftreten sollten.

'error_msg$' ist optional und ist die Meldung, die auf der Konsole angezeigt
wird.

EXECUTE Befehl$ Damit wird der Basic-Befehl „command$” ausgeführt. Die Verwendung sollte
auf Basic-Befehle beschränkt sein, die nacheinander ausgeführt werden, z. B.
funktioniert die GOTO-Anweisung nicht richtig.

Zu den getesteten und funktionierenden Elementen gehören GOSUB,
Unterprogrammaufrufe und andere einfache Anweisungen (wie PRINT und

PicoMite Benutzerhandbuch Seite 141

einfache Zuweisungen).

Mehrere Anweisungen, die durch : getrennt sind, sind nicht erlaubt und führen
zu einem Fehler.

Der Befehl setzt einen internen Watchdog, bevor er den angeforderten Befehl
ausführt. Wenn die Kontrolle nicht zum Befehl zurückkehrt, wie bei einer
GOTO-Anweisung, läuft der Timer ab. In diesem Fall bekommst du die
Meldung „Befehlszeitüberschreitung”.

Du kannst EXECUTE nicht aus Code heraus aufrufen, der mit EXECUTE
ausgeführt wurde.

RUN ist ein Sonderfall und bricht den Timer ab, sodass du den Befehl bei
Bedarf zum Verketten von Programmen verwenden kannst.

EXIT DO

EXIT FOR

EXIT FUNCTION

EXIT SUB

EXIT DO sorgt dafür, dass du eine DO..LOOP-Schleife vorzeitig beenden
kannst.

EXIT FOR ermöglicht einen vorzeitigen Ausstieg aus einer FOR..NEXT-
Schleife.

EXIT FUNCTION ermöglicht einen vorzeitigen Ausstieg aus einer definierten
Funktion.

EXIT SUB ermöglicht einen vorzeitigen Ausstieg aus einer definierten
Unterroutine.

Der alte Standard von EXIT allein (Beenden einer do-Schleife) wird auch
unterstützt.

FILES [fspec$] [,sort] Listet Dateien in beliebigen Verzeichnissen auf dem Standard-Flash-
Dateisystem oder der SD-Karte auf.
„fspec$” (falls angegeben) kann einen Pfad und Suchplatzhalter im
Dateinamen enthalten. Fragezeichen (?) stehen für ein beliebiges Zeichen und
ein Sternchen (*) steht für eine beliebige Anzahl von Zeichen. Wenn nichts
angegeben wird, werden alle Dateien aufgelistet.
Zum Beispiel:
* Alle Einträge suchen
*.TXT Alle Einträge mit der Erweiterung TXT suchen
E*.* Alle Einträge suchen, die mit E beginnen
X?X.* Alle Dateinamen mit drei Buchstaben finden, die mit X beginnen und
enden
mydir/* Alle Einträge im Verzeichnis mydir suchen
Achtung: Wenn du Platzhalter im Pfadnamen benutzt, kommt es zu einem
Fehler
„sort” legt die Sortierreihenfolge wie folgt fest:
Größe in aufsteigender Reihenfolge
Zeit in absteigender Reihenfolge
Name nach Dateiname (Standard, wenn nicht anders angegeben)
Typ nach Dateierweiterung

FILL x, y, Füllfarbe
[,Rahmenfarbe]

Füllt einen Bereich der Anzeige mit einer Farbe.

Wenn der Befehl ohne die optionale Angabe „bordercolour” verwendet wird,
liest er die Farbe an der Position „x”, „y” in der Anzeige und füllt dann den
Bereich ab diesem Punkt, an dem die aktuelle Farbe mit der neuen Farbe
„fillcolour” übereinstimmt.
Wenn die optionale „bordercolour” angegeben wird, ersetzt „fillcolour” alle
bereits vorhandenen Farben, bis die angegebene „bordercolour” erreicht wird.

Beachte, dass dies auf TFT-Displays mit ungepufferten Treibern langsam sein
kann.

Seite142 PicoMite-Benutzerhandbuch

FLAG(n%)=Wert Setzt ein Bit in einem Systemflag-Register. N% kann zwischen 0 und 63 liegen
(d. h. es sind 64 Flag-Bits verfügbar). Der Wert kann 0 oder 1 sein.

Siehe auch den Befehl FLAGS und die Funktion FLAG sowie MM.FLAGS

FLAGS=Wert Setzt alle Bits im Systemflag-Register auf den angegebenen Wert.

Schau dir auch den Befehl FLAG, die Funktion FLAGS und MM.FLAGS an.

FLASH

FLASH LIST

FLASH LIST n [,all]

FLASH ERASE n

FLASH ERASE ALL

FLASH SPEICHERN n

FLASH-LADEN n

FLASH RUN n

FLASH-KETTE n

FLASH ÜBERSCHREIBEN n

FLASH-DISK-LADEN n,
Dateiname$
[,O[ÜBERSCHREIBEN]]

FLASH LOAD IMAGE n,
Dateiname$
[,O/ÜBERSCHREIBEN]

Verwalte die Speicherung von Programmen im Flash-Speicher. Bis zu drei
Programme können im Flash-Speicher gespeichert und bei Bedarf abgerufen
werden. Beachte, dass diese gespeicherten Programme bei einem Firmware-
Upgrade gelöscht werden.

Einer dieser Flash-Speicherplätze kann mit dem Befehl OPTION AUTORUN
n automatisch geladen und ausgeführt werden, wenn das Gerät eingeschaltet
wird. Im Folgenden steht „n“ für eine Zahl zwischen 1 und 3.

Zeigt eine Liste aller Flash-Speicherplätze einschließlich der ersten Zeile des
Programms an.

Listet das auf Speicherplatz n gespeicherte Programm auf. Mit ALL wird die
Liste ohne Seitenumbrüche angezeigt.

Löscht einen Flash-Programmspeicherplatz.

Löscht alle Flash-Programmspeicherplätze.

Speichert das aktuelle Programm an dem angegebenen Flash-Speicherplatz.

Lade ein Programm vom angegebenen Flash-Speicherplatz in den
Programmspeicher.

Führt das Programm im Flash-Speicherplatz n aus, löscht alle Variablen.
Ändert den Programmspeicher nicht.

Führt das Programm an Speicherplatz n aus und lässt alle Variablen so, wie sie
sind (damit kann das Programm viel größer sein als der Programmspeicher).
Ändert den Programmspeicher nicht. Hinweis: Wenn das verkettete Programm
den Befehl READ benutzt, muss es vor dem ersten Lesen RESTORE aufrufen.

Löscht einen Flash-Programmspeicherplatz und speichert dann das aktuelle
Programm an dem angegebenen Flash-Speicherplatz.

Lädt den Inhalt der Datei fname$ als Binärbild in den Flash-Speicherplatz n.
Die Datei kann mit LIBRARY DISK SAVE erstellt werden. Außerdem kann
jede extern erstellte Datei mit Daten, die von einem Programm benötigt
werden, mit Befehlen wie PEEK und MEMORY COPY unter Verwendung der
Adresse des Flash-Speicherplatzes geladen und abgerufen werden.

Wenn der optionale Parameter OVERWRITE (oder O) angegeben wird, wird
der Inhalt des Flash-Slots überschrieben, ohne dass ein Fehler ausgegeben
wird.

Dieser Befehl lädt eine angegebene BMP-Datei im RGB121-Format in den
Flash-Speicherplatz.
Der Flash-Speicherplatz sollte vorher gelöscht worden sein, oder die Angabe
des optionalen Parameters O oder OVERWRITE erzwingt eine Löschung.
Beachte, dass die Firmware die ersten beiden Wörter im Flash-Speicherplatz
auf die Breite und Höhe des gespeicherten Bildes setzt.
Die Bildgröße muss nicht mit den Abmessungen der aktuellen Anzeige

PicoMite Benutzerhandbuch Seite 143

übereinstimmen.

FLUSH [#]fnbr Bewirkt, dass alle gepufferten Schreibvorgänge in eine zuvor mit der
Dateinummer „#fnbr“ geöffnete Datei auf die Festplatte geschrieben werden.
Das # ist optional. Mit diesem Befehl wird sichergestellt, dass bei einem
Stromausfall nach einem Schreibbefehl keine Daten verloren gehen.

FONT [#]font-number, scaling Damit wird die Standardschriftart für die Anzeige von Text auf einem LCD-
Bildschirm oder der Videoausgabe festgelegt.

Schriftarten werden als Zahl angegeben, z. B. #2 (das # ist optional). Details zu
den verfügbaren Schriftarten findest du im Kapitel „Grafikbefehle und -
funktionen”.

„scaling” kann zwischen 1 und 15 liegen und vergrößert die Pixel, sodass die
angezeigten Zeichen entsprechend breiter und höher werden. Bei einer
Skalierung von 2 werden Höhe und Breite verdoppelt.

FOR counter = start TO finish
[STEP increment]

Startet eine FOR-NEXT-Schleife, wobei der „Zähler” zunächst auf „start”
gesetzt wird und in Schritten von „inkrement” (Standardwert ist 1) erhöht wird,
bis der „Zähler” größer als „end” ist.

Der „increment” kann eine ganze Zahl oder eine Gleitkommazahl sein.
Beachte, dass die Verwendung einer Gleitkommazahl für „increment”
Rundungsfehler im „counter” verursachen kann, was dazu führen kann, dass
die Schleife zu früh oder zu spät beendet wird.

„increment” kann negativ sein. In diesem Fall sollte „finish” kleiner als „start”
sein, und die Schleife zählt rückwärts.

Siehe auch den Befehl NEXT.

FRAMEBUFFER

FRAMEBUFFER CREATE

FRAMEBUFFER LAYER

FRAMEBUFFER WRITE
where/where$

FRAMEBUFFER CLOSE
[welcher]

FRAMEBUFFER COPY von,
nach [,b]

NICHT HDMI- UND VGA-VERSIONEN

Mit dem Framebuffer-Befehl kannst du einen Teil des variablen Speichers
entweder einem Framebuffer, einer zweiten Anzeigeebene oder beiden
zuweisen und diese dann auf interessante Weise nutzen, um Tearing-Artefakte
zu vermeiden und/oder Grafikobjekte über die Hintergrundanzeige
abzuspielen.

Erstellt einen Framebuffer „F” mit einem RGB121-Farbraum und einer
Auflösung, die zum konfigurierten SPI-Farbdisplay passt.

Erstellt einen Framebuffer „L“ mit einem RGB121-Farbraum und einer
Auflösung, die zum konfigurierten SPI-Farbdisplay passt.

Legt das Ziel für nachfolgende Grafikbefehle fest.
„where“ kann N, F oder L sein, wobei N die tatsächliche Anzeige ist. Es kann
eine Zeichenfolgenvariable oder ein Literal verwendet werden.

Schließt einen Framebuffer und gibt den Speicher frei. Der optionale Parameter
„which“ kann F oder L sein. Wenn er weggelassen wird, werden beide
geschlossen.

Macht eine superoptimierte Vollbildkopie von einem Framebuffer auf einen
anderen.
„from” und „to” können N, F oder L sein, wobei N die physische Anzeige ist.
Du kannst nur von N auf Displays kopieren, die BLIT und transparenten Text
unterstützen.
Die Firmware komprimiert oder erweitert die RGB-Auflösung automatisch,
wenn du zwischen nicht übereinstimmenden Framebuffern kopierst.
Natürlich gehen beim Kopieren von RGB565 nach RGB121 Informationen
verloren, aber für viele Anwendungen (z. B. Spiele) sind 16 Farbstufen mehr
als ausreichend.

Seite144 PicoMite-Benutzerhandbuch

FRAMEBUFFER WAIT

FRAMEBUFFER-
ZUSAMMENFÜHREN
[Farbe] [,Modus]
[,Aktualisierungsrate]

FRAMEBUFFER SYNC

Beim Kopieren auf ein LCD-Display kann der optionale Parameter „b“
verwendet werden (FRAMEBUFFER COPY F/L, N, B). Dadurch wird die
Firmware angewiesen, den Kopiervorgang mit der zweiten CPU im Raspberry
Pi Pico durchzuführen, und die Steuerung kehrt sofort zum Basic-Programm
zurück.

Hält die Verarbeitung an, bis das LCD-Display in die Bildausblendung geht.
Implementiert für ILI9341-, ST7789_320- und ILI9488-Displays. Wird
verwendet, um Artefakte beim Schreiben auf den Bildschirm zu reduzieren.

Kopiert den Inhalt des Layer-Puffers und des Framebuffers auf das LCD-
Display und lässt dabei alle Pixel einer bestimmten Farbe weg.
Voraussetzungen für den Befehl
sind, dass sowohl FRAMEBUFFER als auch LAYERBUFFER erstellt wurden.

FRAMEBUFFER MERGE – schreibt den Inhalt des Framebuffers auf den
physischen Bildschirm und überschreibt dabei alle Pixel im Framebuffer, die
im Layerbuffer gesetzt sind (nicht Null).
FRAMEBUFFER MERGE col – schreibt den Inhalt des Framebuffers auf den
physischen Bildschirm und überschreibt dabei alle Pixel im Framebuffer, die
im Layerbuffer sind und nicht auf die transparente Farbe „col” gesetzt sind.
Die Farbe wird als Zahl zwischen 0 und 15 angegeben, die Folgendes bedeutet:

0:SCHWARZ,1:BLAU,2:MYRTLE,3:KOBALT,4:MITTLERES
GRÜN,5:CERULEAN,6:GRÜN,7:CYAN,8:ROT,9:MAGENTA,10:ROST,11:
FUCHSIA,12:BRAUN,13:LILA,14:GELB,15:WEISS

FRAMEBUFFER MERGE col,B – wie oben, nur dass die Übertragung auf den
physischen Bildschirm auf der zweiten CPU passiert und die Steuerung sofort
zu Basic zurückkehrt
FRAMEBUFFER MERGE col,R [,updaterate] – Setzt die zweite CPU so, dass
sie die physische Anzeige mit der Zusammenführung der beiden Puffer ständig
aktualisiert.

Setzt automatisch FRAMEBUFFER WRITE F, wenn nicht schon F oder L
eingestellt ist. Standardmäßig wird der Bildschirm so schnell wie möglich
aktualisiert (bei 200 MHz aktualisiert ein ILI9341 im SPI-Modus etwa 13 Mal
pro Sekunde, im 8-Bit-Parallelmodus erreicht der ILI9341 27 FPS).
Wenn „updaterate” eingestellt ist, wird der Bildschirm mit der in
Millisekunden angegebenen Rate aktualisiert (es sei denn, diese ist geringer als
die schnellstmögliche auf dem Display).
Hinweis: FRAMEBUFFER WRITE kann nicht auf N gesetzt werden, während
die kontinuierliche zusammengeführte Aktualisierung aktiv ist.

FRAMEBUFFER MERGE col,A – bricht die kontinuierlichen
Aktualisierungen ab.
Außerdem wird die automatische Aktualisierung durch Löschen des Layerbuf
oder Framebuffers, durch Strg-C oder durch END abgebrochen.

Wartet, bis die letzte Hintergrundzusammenführung oder Hintergrundkopie auf
der zweiten CPU abgeschlossen ist, um ein Zeichnen ohne Bildfehler zu
ermöglichen.

FRAMEBUFFER

FRAMEBUFFER CREATE

NUR HDMI- UND VGA-VERSIONEN

Mit dem Framebuffer-Befehl kannst du einen Teil des variablen Speichers für
Framebuffer, Layer-Puffer oder beides reservieren und diese dann auf coole
Weise nutzen, um Tearing-Artefakte zu vermeiden und/oder Grafikobjekte
über die Hintergrundanzeige abzuspielen.

Erstellt einen Framebuffer „F” mit einem Farbraum und einer Auflösung, die
dem aktuellen Anzeigemodus entsprechen.

PicoMite Benutzerhandbuch Seite 145

FRAMEBUFFER CREATE 2

FRAMEBUFFER LAYER
[Farbe]

FRAMEBUFFER-EBENE
OBEN [Farbe]

FRAMEBUFFER WRITE
wo/wo$

FRAMEBUFFER CLOSE
[welcher]

FRAMEBUFFER COPY von,
nach [,b]

FRAMEBUFFER WARTEN

Nur RP2350: Erstellt einen zweiten Framebuffer „2” mit einem Farbraum und
einer Auflösung, die zum aktuellen Anzeigemodus passen

Erstellt einen Layer-Puffer „L“ mit einem Farbraum und einer Auflösung, die
dem aktuellen Anzeigemodus entsprechen. Der optionale Parameter „colour“
wird als Zahl zwischen 0 und 15 (Modi 2 und 3), als RGB888-Farbe (Modus 4)
oder als Zahl zwischen 0 und 255 (Modus 5) angegeben und legt eine Farbe
fest, die ignoriert wird, wenn die Ebene auf die Anzeige angewendet wird. In
Anzeigemodi, in denen die automatische Ebenenanwendung nicht unterstützt
wird, fungiert ein Ebenenpuffer als weiterer Framebuffer.

Nur RP2350: Erstellt einen zweiten Ebenenpuffer „T“ mit einem Farbraum und
einer Auflösung, die dem aktuellen Anzeigemodus entsprechen. Der optionale
Parameter „colour“ wird als Zahl zwischen 0 und 15 (Modi 2 und 3) oder
zwischen 0 und 255 (Modus 5) angegeben und legt eine Farbe fest, die
ignoriert wird, wenn die Ebene auf die Anzeige angewendet wird. In
Anzeigemodi, in denen die automatische Anwendung derzweitenEbene nicht
unterstützt wird, fungiert er als weiterer Bildspeicher.

Gibt das Ziel für nachfolgende Grafikbefehle an.
„where“ kann N, F, 2, T oder L sein, wobei N die tatsächliche Anzeige ist. Eine
Zeichenfolgenvariable kann verwendet werden.

Schließt einen Framebuffer und gibt den Speicher frei. Der optionale Parameter
„which“ kann F, 2, T oder L sein. Wenn er weggelassen wird, werden alle
geschlossen.

Führt eine hochoptimierte Vollbildkopie von einem Framebuffer in einen
anderen durch.
„from“ und „to“ können N, F, 2, T oder L sein, wobei N die physische Anzeige
ist.
Wenn der optionale Parameter „b” angegeben wird, wird die Verarbeitung
angehalten, bis der Monitor in die Bildausblendung geht.

Hält die Verarbeitung an, bis die nächste Bildausblendung beginnt.

Seite146 PicoMite-Benutzerhandbuch

FUNCTION xxx (arg1 [,arg2,
…]) [AS <type>}
 <Anweisungen>
 <Anweisungen>
 xxx = <Rückgabewert>
END FUNCTION

Definiert eine aufrufbare Funktion. Das ist so, als würdest du MMBasic
während der Ausführung deines Programms eine neue Funktion hinzufügen.

„xxx” ist der Name der Funktion und muss den Regeln für die Benennung von
Variablen entsprechen. Der Typ der Funktion kann durch einen Typ-Suffix (z.
B. xxx$) oder durch Angabe des Typs mit AS <Typ> am Ende der
Funktionsdefinition festgelegt werden. Beispiel:

FUNCTION xxx (arg1, arg2) AS STRING

'arg1', 'arg2' usw. sind die Argumente oder Parameter der Funktion (die
Klammern sind immer erforderlich, auch wenn keine Argumente vorhanden
sind). Ein Array wird mit leeren Klammern angegeben, z. B. arg3(). Der Typ
des Arguments kann durch einen Typ-Suffix (z. B. arg1$) oder durch Angabe
des Typs mit AS <Typ> (z. B. arg1 AS STRING) festgelegt
werden.

Das Argument kann auch eine andere definierte Funktion oder dieselbe
Funktion sein, wenn Rekursion verwendet werden soll (der Rekursionsstapel
ist begrenzt).

Um den Rückgabewert der Funktion festzulegen, setzt man den Wert auf den
Namen der Funktion. Zum Beispiel:

FUNCTION SQUARE(a)
 SQUARE = a * a
END FUNCTION

Jede Definition muss eine END FUNCTION-Anweisung haben. Wenn diese
erreicht wird, gibt die Funktion ihren Wert an den Ausdruck zurück, von dem
aus sie aufgerufen wurde. Der Befehl EXIT FUNCTION kann für einen
vorzeitigen Abbruch verwendet werden.

Du benutzt die Funktion, indem du ihren Namen und ihre Argumente in einem
Programm verwendest, genau wie bei einer normalen MMBasic-Funktion.
Zum Beispiel:

PRINT QUADRAT(56,8)

Wenn die Funktion aufgerufen wird, wird jedes Argument im Aufrufer mit
dem Argument in der Funktionsdefinition abgeglichen. Diese Argumente sind
nur innerhalb der Funktion verfügbar.

Funktionen können mit einer variablen Anzahl von Argumenten aufgerufen
werden. Alle in der Funktionsliste ausgelassenen Argumente werden auf Null
oder eine Null-Zeichenkette gesetzt.

Argumente in der Liste des Aufrufers, die eine Variable sind und den richtigen
Typ haben, werden per Referenz an die Funktion übergeben. Das heißt, dass
alle Änderungen am entsprechenden Argument in der Funktion auch in die
Variable des Aufrufers kopiert werden und daher nach Beendigung der
Funktion noch zugänglich sind. Dem Argument kann das Präfix BYVAL
vorangestellt werden, wodurch dieser Mechanismus verhindert wird und nur
der Wert verwendet wird. Alternativ weist das Präfix BYREF MMBasic an,
dass eine Referenz erforderlich ist, und es wird ein Fehler generiert, wenn dies
nicht möglich ist.

Arrays werden durch Angabe des Array-Namens mit leeren Klammern (z. B.
arg()) übergeben, immer per Referenz und müssen vom richtigen Typ sein.

Du darfst nicht mit Befehlen wie GOTO in eine Funktion springen oder aus ihr
herausspringen. Das kann unvorhersehbare Nebenwirkungen haben, die dir den
Tag verderben könnten.

GAMEPAD COLOUR Kanal,
Farbe

Ändert die Farbe des Displayfelds auf einem PS4-Controller auf dem USB-
Kanal „channel”. „colour” wird als Standard-RGB888-Wert festgelegt, z. B.
RGB(RED).

PicoMite Benutzerhandbuch Seite 147

GAMEPAD HAPTIC Kanal
links, rechts

Lässt die linken und rechten Vibrationsmotoren eines PS4-Controllers auf dem
USB-Kanal „Kanal” laufen. „links” und „rechts” müssen eine Zahl zwischen 0
(aus) und 255 (maximal) sein.

GAMEPAD INTERRUPT
ENABLE Kanal, int [,mask]

GAMEPAD INTERRUPT
DISABLE Kanal

GAMEPAD MONITOR

GAMEPAD CONFIGURE
vid, pid, i0, c0, i1, c1, i2, c2,
i3, c3, i4, c4, i5, c5, i6, c6, i7,
c7, i8,
c8,i9,c9,i10,c10,i11,c11,i12,c1
2,i13,c13,i14,c14,i15,c15

Aktiviert Interrupts beim Drücken der Tasten eines USB-Gamepads. Der
optionale Parameter „mask” legt fest, welche Schalter den Interrupt auslösen
(standardmäßig alle). „mask” ist eine Bitmap, die der Ausgabe der Funktion
DEVICE(GAMEPAD channel,B) entspricht.

Deaktiviert Interrupts vom Gamepad auf dem angegebenen Kanal.

Verwende GAMEPAD MONITOR, bevor du ein Gamepad anschließt. Nach
dem Anschließen wird bei jeder Änderung der Tasten ein Vorher-Nachher-
Bericht angezeigt.

Verwende diese Funktion, um ein Gamepad zu konfigurieren, das von der
Firmware nicht unterstützt wird. Führe den Befehl aus, bevor du das Gamepad
anschließt. Alle 34 Parameter sind obligatorisch. In jedem Fall definieren die
i/c-Parameter den Index im Bericht und die Bitnummer an diesem Index für die
Daten, die dem entsprechenden Bit entsprechen. Weitere Informationen zur
Bitverwendung (0-15) findest du unter DEVICE(GAMEPAD n,B).

GOTO Ziel Leitet die Programmausführung zum Ziel weiter, das eine Zeilennummer oder
eine Bezeichnung sein kann.

GUI BITMAP x, y, Bits [,
Breite] [, Höhe] [,
Skalierung] [, c] [, bc]

Zeigt die Bits in einer Bitmap auf einem VGA/HDMI-Monitor oder LCD-
Bildschirm an, beginnend bei „x” und „y” auf einem angeschlossenen Gerät.

„height” und „width” sind die Abmessungen der Bitmap, wie sie auf dem Gerät
angezeigt werden, und sind standardmäßig auf 8x8 eingestellt.

„scale” ist optional und ist standardmäßig auf den Wert gesetzt, der mit dem
Befehl FONT festgelegt wurde.

„c” ist die Zeichenfarbe und „bc” ist die Hintergrundfarbe. Sie sind optional
und sind standardmäßig auf die aktuellen Vordergrund- und Hintergrundfarben
eingestellt.

Die Bitmap kann eine Ganzzahl oder eine Zeichenfolgenvariable oder -
konstante sein und wird mit dem ersten Byte als ersten Bits der obersten Zeile
(zuerst Bit 7, dann Bit 6 usw.) gezeichnet, gefolgt vom nächsten Byte usw.
Wenn die oberste Zeile gefüllt ist, beginnt die nächste Zeile der angezeigten
Bitmap mit dem nächsten Bit in der Ganzzahl oder Zeichenfolge.

Eine Definition der Farben und Grafikkoordinaten findest du im Kapitel
Grafikbefehle und -funktionen.

GUI CALIBRATE

oder

GUI CALIBRATE a,b,c,d,d

NICHT VGA- UND HDMI-VERSIONEN

Dieser Befehl wird verwendet, um die Touch-Funktion eines LCD-Bildschirms
zu kalibrieren. Er zeigt eine Reihe von Zielen auf dem Bildschirm an und
wartet darauf, dass jedes Ziel präzise berührt wird.

Der Befehl kann auch mit fünf Argumenten verwendet werden, die die
Kalibrierungswerte angeben. In diesem Fall wird die Kalibrierung
durchgeführt, ohne dass Ziele angezeigt werden oder eine Eingabe vom
Benutzer erforderlich ist. Um die Werte zu ermitteln, verwenden Sie die
OPTION LIST, nachdem Sie das Display normal kalibriert haben. Beachten
Sie, dass diese Werte für dieses Display spezifisch sind und erheblich variieren
können.

Seite148 PicoMite-Benutzerhandbuch

GUI-TEST LCDPANEL Testet ein Anzeigegerät (LCD, VGA usw.). Es zeichnet kontinuierlich eine
animierte Anzeige mit Farbcirkeln auf dem Display.

GUI RESET LCDPANEL

NICHT VGA- UND HDMI-VERSIONEN

Reinitialisiert das konfigurierte LCD-Panel. Die Initialisierung erfolgt
automatisch beim Start der PicoMite-Firmware, aber unter bestimmten
Umständen kann es notwendig sein, die Stromversorgung des LCD-Panels zu
unterbrechen (z. B. um Batteriestrom zu sparen), und dann kann dieser Befehl
verwendet werden, um das Display neu zu initialisieren.

GUI-TEST TOUCH

NICHT VGA- UND HDMI-VERSIONEN

Testet die Touch-Funktion des LCD-Bildschirms.

Der Bildschirm wird gelöscht und MMBasic wartet auf eine Berührung, die
einen weißen Punkt auf dem Display anzeigt, der die genaue
Berührungsposition auf dem Bildschirm markiert. Jedes in die Konsole
eingegebene Zeichen beendet den Test.

HELP suchtext Der Befehl „help” sucht nach einer Datei namens „help.txt” auf Laufwerk A:.
Diese Datei kann vom Benutzer oder von der Community erstellt worden sein
und muss ein bestimmtes Format haben.

Bei jedem Hilfseintrag muss die erste Zeile eine Suchzeichenfolge sein, der ein
~-Zeichen vorangestellt ist. Diese wird von der Hilfefunktion zum Auffinden
eines Eintrags verwendet und nicht angezeigt. Der „Suchtext” kann ? für die
Ersetzung eines einzelnen Zeichens oder * für die Ersetzung mehrerer Zeichen
(oder keiner) enthalten.

Nach dem Suchstring gibt die nächste Zeile normalerweise die Syntax eines
bestimmten Befehls oder einer bestimmten Funktion an. Alle folgenden Zeilen
sind weitere Erläuterungen.

z. B.

~COLOR
COLOR fore [, back]
Legt die Standardfarbe für Befehle (PRINT usw.) fest
die auf dem angeschlossenen LCD-Bildschirm angezeigt werden.
„fore” ist die Vordergrundfarbe, „back” die Hintergrundfarbe.
Der Hintergrund ist optional und wird, wenn nicht angegeben, standardmäßig
schwarz angezeigt.

Der Befehl gibt alle Einträge zurück, die mit dem „searchtext”
übereinstimmen, und diese werden so paginiert, dass sie zum Konsolengerät
passen. Verschiedene Versionen von help.txt sind verfügbar unter
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17865

HUMID pin, tvar, hvar
[,DHT11]

Gibt die Temperatur und Luftfeuchtigkeit mithilfe des DHT22-Sensors zurück.
Alternative Versionen des DHT22 sind der AM2303 oder der RHT03 (alle sind
kompatibel).

„pin” ist der mit dem Sensor verbundene I/O-Pin. Jeder I/O-Pin kann
verwendet werden.

„tvar” ist die Variable, die die gemessene Temperatur speichert, und „hvar” ist
das Gleiche für die Luftfeuchtigkeit. Beide müssen vorhanden sein und beide
müssen Fließkommavariablen sein.

Beispiel: HUMID 3, TEMP!, HUMIDITY!

Die Temperatur wird in ºC gemessen und die Luftfeuchtigkeit in Prozent
relativer Luftfeuchtigkeit. Beide werden mit einer Auflösung von 0,1
gemessen. Wenn ein Fehler auftritt (Sensor nicht angeschlossen oder
fehlerhaftes Signal), werden beide Werte auf 1000,0 gesetzt.

Normalerweise sollte der DHT22 mit 3,3 V betrieben werden, damit sein
Ausgang für den Raspberry Pi Pico unter 3,6 V bleibt (beim Pico 2 gibt's dieses

PicoMite Benutzerhandbuch Seite 149

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17865
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17865

Problem nicht), und der Signalpin sollte mit einem 1K- bis 10K-Widerstand
(4,7K empfohlen) auf 3,3 V hochgezogen werden.

Der optionale Parameter DHT11 ändert die Timings, damit er mit dem DHT11
funktioniert. Setze ihn auf 1 für DHT11 und auf 0 oder lass ihn weg für
DHT22.

I2C

I2C OPEN Geschwindigkeit,
Timeout

Weitere Details findest du in Anhang B

Aktiviert das erste I2C-Modul im Master-Modus. „speed” ist die zu
verwendende Taktrate (in KHz) und muss entweder 100, 400 oder 1000 sein.

„timeout” ist ein Wert in Millisekunden, nach dessen Ablauf die Sende- und
Empfangskommandos des Masters unterbrochen werden, wenn sie nicht
abgeschlossen sind. Der Mindestwert ist 100. Der Wert Null deaktiviert das
Timeout (dies wird jedoch nicht empfohlen).

I2C WRITE addr, option,
sendlen, senddata [,sendata ..]

Sendet Daten an das I2C-Slave-Gerät. „addr“ ist die I2C-Adresse des Slaves.

„option” kann 0 für den normalen Betrieb oder 1 sein, um die Kontrolle über
den Bus nach dem Befehl zu behalten (eine Stoppbedingung wird nach
Abschluss des Befehls nicht gesendet).

„sendlen“ ist die Anzahl der zu sendenden Bytes. „senddata“ sind die zu
sendenden Daten – diese können auf verschiedene Weise angegeben werden
(alle gesendeten Werte liegen zwischen 0 und 255).

Hinweise:

 Die Daten können als einzelne Bytes in der Befehlszeile angegeben
werden.
Beispiel: I2C WRITE &H6F, 0, 3, &H23, &H43, &H25

 Die Daten können in einem eindimensionalen Array angegeben werden,
das mit leeren Klammern (d. h. ohne Dimensionen) angegeben wird. Die
„sendlen“-Bytes des Arrays werden beginnend mit dem ersten Element
gesendet.
Beispiel: I2C WRITE &H6F, 0, 3, ARRAY()

Die Daten können eine String-Variable sein (keine Konstante).
Beispiel: I2C WRITE &H6F, 0, 3, STRING$

I2C READ addr, option,
rcvlen, rcvbuf

Ruft Daten vom I2C-Slave-Gerät ab. „addr” ist die I2C-Adresse des Slaves.

„option” kann 0 für den normalen Betrieb oder 1 sein, um die Kontrolle über
den Bus nach dem Befehl zu behalten (eine Stoppbedingung wird nach
Abschluss des Befehls nicht gesendet).

 „rcvlen” ist die Anzahl der zu empfangenden Bytes.

„rcvbuf” ist die Variable oder das Array, in dem die empfangenen Daten
gespeichert werden – das kann sein:

 Eine Zeichenfolgenvariable. Die Bytes werden als aufeinanderfolgende
Zeichen gespeichert.

 Ein eindimensionales Array von Zahlen, das mit leeren Klammern
angegeben wird. Die empfangenen Bytes werden in aufeinanderfolgenden
Elementen des Arrays gespeichert, beginnend mit dem ersten.
Beispiel: I2C READ &H6F, 0, 3, ARRAY()

Eine normale numerische Variable (in diesem Fall muss rcvlen 1 sein).

I2C CHECK addr Setzt die schreibgeschützte Variable MM.I2C auf 0, wenn ein Gerät auf die
Adresse „addr” antwortet. MM.I2C wird auf 1 gesetzt, wenn keine Antwort
kommt.

Seite150 PicoMite-Benutzerhandbuch

I2C CLOSE

I2C SLAVE

Deaktiviert das Master-I2C-Modul. Dieser Befehl sendet auch ein Stopp-
Signal, wenn der Bus noch gehalten wird.

Siehe Anhang B

I2C2 Die gleichen Befehle wie für I2C (oben), aber für den zweiten I2C-Kanal.

IF expr THEN stmt [: stmt]

oder

IF expr THEN stmt ELSE stmt

Wertet den Ausdruck „expr” aus und führt die Anweisung nach dem
Schlüsselwort THEN aus, wenn er wahr ist, oder springt zur nächsten Zeile,
wenn er falsch ist. Wenn weitere Anweisungen in der Zeile vorhanden sind
(getrennt durch Doppelpunkte (:)), werden diese ebenfalls ausgeführt, wenn sie
wahr sind, oder übersprungen, wenn sie falsch sind. Das Schlüsselwort ELSE
ist optional. Wenn es vorhanden ist, werden die darauf folgenden Anweisungen
ausgeführt, wenn „expr” als falsch ausgewertet wird.

Die Konstruktion „THEN-Anweisung” kann auch ersetzt werden durch:
GOTO Zeilennummer | Label'.

Diese Art von IF-Anweisung steht komplett in einer Zeile.

IF Ausdruck THEN
 <Anweisungen>
[ELSEIF Ausdruck THEN
 <Anweisungen>]
[ELSE
 <Anweisungen>]
ENDIF

Mehrzeilige IF-Anweisung mit optionalen ELSE- und ELSEIF-Fällen, die mit
ENDIF endet. Jede Komponente steht in einer eigenen Zeile.

Wertet „Ausdruck” aus und führt die Anweisung(en) nach THEN aus, wenn
der Ausdruck wahr ist, oder optional die Anweisung(en) nach der ELSE-
Anweisung, wenn er falsch ist. Die ELSEIF-Anweisung (falls vorhanden) wird
ausgeführt, wenn die vorherige Bedingung falsch ist, und startet eine neue IF-
Kette mit weiteren ELSE- und/oder ELSEIF-Anweisungen, je nach Bedarf.
Ein ENDIF wird verwendet, um die mehrzeilige IF-Anweisung zu beenden.

INC var [,inkrement] Erhöht die Variable „var” entweder um 1 oder, falls angegeben, um den Wert
in „increment”. „increment” kann negativ sein, was zu einer Verringerung
führt.

Funktional entspricht dies var = var + increment, wird aber viel
schneller verarbeitet.

INPUT ["prompt$";] var1
[,var2 [, var3 [, etc]]]

Nimmt eine Liste von Werten, die durch Kommas (,) getrennt sind und über
die Konsole eingegeben werden, und ordnet sie einer sequenziellen Liste von
Variablen zu.

Wenn der Befehl zum Beispiel lautet: INPUT a, b, c

und Folgendes über die Tastatur eingegeben wird: 23, 87, 66

Dann ist a = 23 und b = 87 und c = 66

Die Liste der Variablen kann eine Mischung aus Float-, Integer- oder String-
Variablen sein. Die in die Konsole eingegebenen Werte müssen dem Typ der
Variablen entsprechen.

Wenn ein einzelner Wert eingegeben wird, ist kein Komma erforderlich (dieser
Wert darf jedoch kein Komma enthalten).

„prompt$“ ist eine Zeichenfolgenkonstante (keine Variable oder kein
Ausdruck) und wird, wenn angegeben, zuerst ausgegeben. Normalerweise wird
die Eingabeaufforderung mit einem Semikolon (;) beendet, und in diesem Fall
wird nach der Eingabeaufforderung ein Fragezeichen ausgegeben. Wenn die
Eingabeaufforderung mit einem Komma (,) statt mit einem Semikolon (;)
beendet wird, wird das Fragezeichen unterdrückt.

INPUT #nbr,
Liste von Variablen

Wie oben, nur dass die Eingabe von einem seriellen Port oder einer Datei
gelesen wird, die vorher für INPUT als „nbr” geöffnet wurde. Sieh dir den
Befehl OPEN an.

PicoMite Benutzerhandbuch Seite 151

INTERRUPT [myint] Dieser Befehl löst eine Software-Unterbrechung aus. Die Unterbrechung wird
mit INTERRUPT „myint” eingerichtet, wobei „myint” der Name einer
Subroutine ist, die ausgeführt wird, wenn die Unterbrechung ausgelöst wird.

Verwende INTERRUPT 0, um den Interrupt zu deaktivieren.

Verwende INTERRUPT ohne Parameter, um den Interrupt auszulösen.

Hinweis: Der Interrupt kann auch aus einem CSUB

IR dev, key , int

oder

IR CLOSE

Decodiert NEC- oder Sony-Infrarot-Fernbedienungssignale.

Ein IR-Empfängermodul ist nötig, um das IR-Licht zu erfassen und das Signal
zu demodulieren. Es kann an jeden Pin angeschlossen werden, aber dieser Pin
muss vorher mit dem Befehl SETPIN n, IR

Die Dekodierung des IR-Signals läuft im Hintergrund und das Programm läuft
nach diesem Befehl ohne Unterbrechung weiter. „dev” und „key” sollten
numerische Variablen sein und ihre Werte werden aktualisiert, sobald ein
neues Signal empfangen wird („dev” ist der von der Fernbedienung gesendete
Gerätecode und „key” ist die gedrückte Taste).

„int” ist eine benutzerdefinierte Subroutine, die aufgerufen wird, wenn eine
neue Taste gedrückt wird oder wenn die vorhandene Taste für die automatische
Wiederholung gedrückt gehalten wird. In der Interrupt-Subroutine kann das
Programm die Variablen „dev” und „key” überprüfen und entsprechende
Maßnahmen ergreifen.

Der Befehl „IR CLOSE” beendet den IR-Decoder.

Beachte, dass beim NEC-Protokoll die Bits in „dev” und „key” vertauscht sind.
Beispielsweise sollte in „key” Bit 0 Bit 7 sein, Bit 1 sollte Bit 6 sein usw. Dies
hat keinen Einfluss auf die normale Verwendung, aber wenn Sie nach einem
bestimmten numerischen Code suchen, der von einem Hersteller bereitgestellt
wird, sollten Sie die Bits umkehren. Wie das geht, wird hier beschrieben:
http://www.thebackshed.com/forum/forum_posts.asp?TID=8367

Weitere Infos findest du im Kapitel „Spezielle Hardwaregeräte”.

IR-SEND-Pin, dev, key Erzeugt ein 12-Bit-Infrarotsignal nach dem Protokoll der Sony-Fernbedienung.

„pin” ist der zu verwendende I/O-Pin. Das kann jeder I/O-Pin sein, der
automatisch als Ausgang konfiguriert wird und an eine Infrarot-LED
angeschlossen werden sollte. Im Ruhezustand ist der Pegel niedrig, hohe Pegel
zeigen an, wann die LED eingeschaltet werden soll.

„dev” ist das zu steuernde Gerät und eine Zahl zwischen 0 und 31, „key” ist
der simulierte Tastendruck und eine Zahl zwischen 0 und 127.

Das IR-Signal wird mit etwa 38 kHz moduliert, und das Senden des Signals
dauert etwa 25 ms, währenddessen die Programmausführung angehalten wird.

Seite152 PicoMite-Benutzerhandbuch

http://www.thebackshed.com/forum/forum_posts.asp?TID=8367
http://www.thebackshed.com/forum/forum_posts.asp?TID=8367

KEYPAD var, int, r1, r2, r3,
r4, c1, c2, c3 [, c4]

oder

KEYPAD CLOSE

Überwacht und entschlüsselt Tastendrücke auf einer 4x3- oder 4x4-Tastatur.

Die Überwachung der Tastatur läuft im Hintergrund und das Programm läuft
nach diesem Befehl ohne Unterbrechung weiter. „var” sollte eine numerische
Variable sein und ihr Wert wird jedes Mal aktualisiert, wenn ein Tastendruck
erkannt wird.

„int” ist eine benutzerdefinierte Subroutine, die aufgerufen wird, wenn ein neuer
Tastendruck empfangen wird. In der Interrupt-Subroutine kann das Programm
die Variable „var” überprüfen und entsprechende Maßnahmen ergreifen.

r1, r2, r3 und r4 sind Pin-Nummern, die für die vier Reihenverbindungen zum
Tastenfeld verwendet werden, und c1, c2, c3 und c4 sind die
Spaltenverbindungen. c4 ist optional und wird nur bei 4x4-Tastenfeldern
verwendet. Dieser Befehl konfiguriert diese Pins automatisch wie erforderlich.

Bei einem Tastendruck ist der Wert, der „var” zugewiesen wird, die Nummer
einer Zifferntaste (z. B. gibt „6” den Wert 6 zurück) oder 10 für die Taste *
und 11 für die Taste #. Bei 4x4-Tastaturen wird der Wert 20 für A, 21 für B, 22
für C und 23 für D zurückgegeben.

Der Befehl KEYPAD CLOSE beendet die Tastaturfunktion und setzt den I/O-
Pin wieder auf einen nicht konfigurierten Zustand zurück.

Weitere Infos findest du im Abschnitt „Spezielle Hardwaregeräte”.

KEYPAD keymapmap!(),
var!,int, startcolpin, nocols,
startrowpin, norows

NUR RP2350-VERSIONEN

Konfigurier und verwende eine Tastatur mit einer beliebigen Anzahl von
Zeilen und Spalten und weise jeder Taste benutzerdefinierte Rückgabecodes
zu.

„keymapmap!()“ ist ein zweidimensionales Array von Floats, das die vom
Benutzer angegebene Zuordnung für jede Taste enthält. „ “ Die Array-
Dimensionen müssen mit der angegebenen Anzahl von Spalten und Zeilen
übereinstimmen.

„var!” ist die Float-Variable, die den zurückgegebenen Wert enthält. „int” ist
die Interrupt-Routine, die beim Drücken einer Taste aufgerufen wird.

'startcolpin' ist der Pin, der den Bereich der zusammenhängenden GP-Pins
beginnt, die für den Spaltenscan verwendet werden, während 'nocols' die
Anzahl der Pins in diesem Bereich ist. 'startrowpin' ist der Pin, der 'norows'
zusammenhängender GP-Pins beginnt, die für den Zeilenscan verwendet
werden.

Beispiel: Bei einer Tastatur mit 3 Spalten und 4 Zeilen (d. h. 123 / 456 / 789 /
*0#). Verbinde GP1 mit der linken Spalte, GP2 mit der mittleren und GP3 mit
der rechten, dann die 4 Zeilen von oben nach unten mit GP4 bis GP7.

Das Programm könnte so aussehen:
OPTION BASIS 1
DIM keymap(3,4)=(1,4,7,10, 4,5,6,0, 3,6,9,11)
KEYPAD-Tastenbelegung(), keyret, myint, GP1, 3,
GP4, 4
DO
 ' Hauptprogramm-Verarbeitungsschleife
LOOP

SUB myint
 PRINT keyret
END SUB

PicoMite Benutzerhandbuch Seite 153

KILL file$ [,all] Löscht die durch „file$” angegebene Datei. Die Dateiendung muss angegeben
werden.

Wenn fname$ ein „*” oder ein „?” enthält, wird eine Massenlöschung gestartet.
Wenn du den optionalen Parameter „all” benutzt, musst du nur einmal
bestätigen. Wenn „all” nicht angegeben ist, musst du für jede Datei einzeln
bestätigen.

LCD INIT d4, d5, d6, d7, rs,
en
oder
LCD line, pos, text$
oder
LCD CLEAR
oder

LCD CLOSE

Zeigt Text auf einem LCD-Zeichenanzeigemodul an. Dieser Befehl
funktioniert mit den meisten 1-zeiligen, 2-zeiligen oder 4-zeiligen LCD-
Modulen, die den Controller KS0066, HD44780 oder SPLC780 verwenden
(dies kann jedoch nicht garantiert werden).

Der Befehl LCD INIT wird verwendet, um das LCD-Modul für die
Verwendung zu initialisieren. „d4” bis „d7” sind die E/A-Pins, die mit den
Eingängen D4 bis D7 des LCD-Moduls verbunden sind (die Eingänge D0 bis
D3 sollten mit Masse verbunden sein). „rs” ist der Pin, der mit dem
Registerauswahleingang des Moduls verbunden ist (manchmal auch als CMD
bezeichnet). „en” ist der Pin, der mit dem Freigabe- oder Chipauswahleingang
des Moduls verbunden ist. Der R/W-Eingang des Moduls sollte immer geerdet
sein. Die oben genannten I/O-Pins werden durch diesen Befehl automatisch als
Ausgänge festgelegt.

Wenn das Modul initialisiert wurde, können mit dem LCD-Befehl Daten
darauf geschrieben werden. „line” ist die Zeile auf dem Display (1 bis 4) und
„pos” ist die Zeichenposition in der Zeile (die erste Position ist 1). „text$” ist
eine Zeichenfolge, die den Text enthält, der auf das LCD-Display geschrieben
werden soll.

„pos” kann auch C8, C16, C20 oder C40 sein. In diesem Fall wird die Zeile
gelöscht und der Text auf einem Display mit 8, 16, 20 oder 40 Zeilen zentriert.
Beispiel:

LCD 1, C16, „Hallo”

LCD CLEAR löscht alle auf dem LCD angezeigten Daten und LCD CLOSE
beendet die LCD-Funktion und setzt alle E/A-Pins wieder auf den nicht
konfigurierten Zustand zurück.

Weitere Infos findest du im Kapitel „Spezielle Hardwaregeräte”.

LCD CMD d1 [, d2 [, etc]]

oder

LCD DATA d1 [, d2 [, etc]]

Diese Befehle senden ein oder mehrere Bytes als Befehl (LCD CMD) oder als
Daten (LCD DATA) an ein LCD-Display. Jedes Byte ist eine Zahl zwischen 0
und 255 und muss durch Kommas getrennt werden. Das LCD muss zuvor mit
dem Befehl LCD INIT initialisiert worden sein (siehe oben).

Diese Befehle können verwendet werden, um ein nicht standardmäßiges LCD
im „Rohmodus” anzusteuern, oder um spezielle Funktionen wie Scrollen,
Cursor und benutzerdefinierte Zeichensätze zu aktivieren. Die erforderlichen
Befehls- und Datenwerte findest du im Datenblatt deines LCD.

LET Variable = Ausdruck Weist der Variablen den Wert von „Ausdruck” zu. LET wird automatisch
angenommen, wenn eine Anweisung nicht mit einem Befehl beginnt. Beispiel:

Var = 56

LIBRARY SAVE

oder

LIBRARY DELETE

oder

BIBLIOTHEK
AUFZEICHNEN

Die Bibliothek ist ein spezieller Teil des Programmspeichers, der
Programmcode wie Unterprogramme, Funktionen und CFunktionen enthalten
kann. Diese Routinen sind für den Programmierer nicht sichtbar, stehen aber
dem laufenden Programm zur Verfügung und funktionieren genauso wie die in
MMBasic eingebauten Befehle und Funktionen.

Jeder Code in der Bibliothek, der nicht in einer Unterroutine oder Funktion
enthalten ist, wird unmittelbar vor der Ausführung eines Programms
ausgeführt. Dies kann zum Initialisieren von Konstanten, zum Festlegen von
Optionen usw. verwendet werden. Eine ausführliche Erläuterung findest du

Seite154 PicoMite-Benutzerhandbuch

oder

LIBRARY LIST ALL

oder

BIBLIOTHEKS-DISK
SPEICHERN fname$

oder

LIBRARY DISK LOAD
fname$

unter der Überschrift „Die Bibliothek” in diesem Handbuch.

Die Bibliothek wird im Programmspeicher Flash Slot 3 gespeichert, der dann
nicht mehr zum Speichern eines Programms zur Verfügung steht (die Slots 1
bis 2 sind weiterhin verfügbar).

LIBRARY SAVE nimmt alles, was sich im normalen Programmspeicher
befindet, komprimiert es (entfernt redundante Daten wie Kommentare) und
hängt es an den Bibliotheksbereich an (der Hauptprogrammspeicher ist dann
leer). Der Code in der Bibliothek wird nicht in LIST oder EDIT angezeigt und
wird nicht gelöscht, wenn ein neues Programm geladen oder NEW verwendet
wird.

LIBRARY DELETE entfernt die Bibliothek und gibt Flash-Steckplatz 3 für die
normale Verwendung zurück (OPTION RESET macht dasselbe).

LIBRARY LIST listet den Inhalt der Bibliothek auf. Verwende ALL, um ohne
Seitenbestätigungen aufzulisten.

LIBRARY DISK SAVE fname$ speichert die aktuelle Bibliothek als
Binärdatei, sodass sie später mit LIBRARY DISK LOAD fname$
wiederhergestellt werden kann. So lassen sich Bibliotheken für einzelne
Programme einfach speichern, wiederherstellen und verteilen. Außer den
versionsspezifischen Funktionen in der Bibliothek (WEB, VGA, GUI) können
Bibliotheken auch versionsübergreifend genutzt werden.

LINE x1, y1, x2, y2 [,[-] LW
[, C]]

Zeichnet eine Linie auf dem Display, die bei den Koordinaten „x1” und „y1”
anfängt und bei „x2” und „y2” endet.
„LW” ist die Breite der Linie. Wenn nichts angegeben ist, ist der Standardwert
1. Bei Linien mit einer definierten Breite bestimmen die Koordinaten x1 und
y1 den Pixel oben links der dicken Linie. Das heißt, die Linie befindet sich
rechts von der angegebenen Position oder darunter auf dem Bildschirm.
Wenn die Breite als negativer Wert angegeben wird, gilt die Breite für Linien
in alle Richtungen, und sie werden auf die angegebenen Start- und
Zielkoordinaten zentriert.
„C“ ist eine ganze Zahl, die die Farbe angibt, und ist standardmäßig auf die
aktuelle Vordergrundfarbe eingestellt.
Alle Parameter können als Arrays ausgedrückt werden, und die Software
zeichnet die Anzahl der Linien, die durch die Abmessungen des kleinsten
Arrays bestimmt wird. „x1”, „y1”, „x2” und „y2” müssen alle Arrays oder alle
einzelne Variablen/Konstanten sein, sonst wird ein Fehler erzeugt. „lw” und
„c” können entweder Arrays oder einzelne Variablen/Konstanten sein.

LINE AA x1, y1, x2, y2 [,
LW [, C]]

Zeichnet eine Linie mit Anti-Aliasing. Die Parameter sind die gleichen wie
beim Befehl LINE oben. Diese Version nutzt aber variable Intensitätswerte der
angegebenen Farbe, um die „versetzte” Qualität von diagonalen Linien zu
reduzieren. Außerdem kann diese Version diagonale Linien beliebiger Breite
zeichnen. Beachte, dass sie keine Arrays als Parameter akzeptiert.

LINE GRAPH x(), y(), Farbe Dieser Befehl erzeugt ein Liniendiagramm der in „x()” und „y()” angegebenen
Koordinatenpaare. Das Diagramm hat n-1 Segmente, wobei die Arrays x und y
n Elemente enthalten.

LINE INPUT [prompt$,]
string-variable$

Liest eine ganze Zeile aus der Konsoleneingabe in „string-variable$”.

„prompt$“ ist eine Zeichenfolgenkonstante (keine Variable oder kein
Ausdruck) und wird, wenn angegeben, zuerst ausgegeben. Ein Fragezeichen
wird nur ausgegeben, wenn es Teil von „prompt$“ ist. Im Gegensatz zu INPUT
liest dieser Befehl eine ganze Zeile und hält nicht bei durch Kommas
getrennten Datenelementen an.

PicoMite Benutzerhandbuch Seite 155

LINE INPUT #nbr, string-
variable$

Wie oben, nur dass die Eingabe von einem seriellen Kommunikationsport oder
einer Datei gelesen wird, die vorher für INPUT als „nbr” geöffnet wurde. Sieh
dir den Befehl OPEN an.

LINE PLOT ydata() [,nbr]
[,xstart] [,xinc] [,ystart] [,yinc]
[,colour]

Zeichnet ein Liniendiagramm aus einem Array von Datenpunkten der y-Achse.

„ydata()” ist ein Array aus Floats oder Integers, die gezeichnet werden sollen.

„nbr“ ist die Anzahl der zu zeichnenden Liniensegmente – standardmäßig ist
das der kleinere Wert aus der

Array-Größe und MM.HRES-2, wenn nichts angegeben ist.

„xstart” ist die x-Koordinate, bei der mit dem Zeichnen begonnen werden soll
– Standardwert ist 0

„xinc” ist die Schrittweite entlang der x-Achse, um jede Koordinate zu
zeichnen – Standardwert ist 1

„ystart“ ist die Position in ydata, an der die Darstellung beginnen soll –
Standardwert ist der Array-Anfang. Hinweis: berücksichtigt OPTION BASE

„yinc” ist die Schrittweite für den Index in ydata, die für jeden zu zeichnenden
Punkt hinzugefügt wird

„colour“ ist die Farbe, in der die Linie gezeichnet wird

LIST [fname$]

oder

LIST ALL [fname$]

Zeigt ein Programm auf der Konsole an.

LIST allein listet das Programm mit einer Pause nach jedem Bildschirm voll
auf.

LIST ALL zeigt das Programm ohne Pausen an. Das ist praktisch, wenn du das
Programm auf einen Terminalemulator auf einem PC übertragen willst, der den
Eingabestrom in eine Datei speichern kann.

Wenn du das optionale „fname$” angibst, wird die Datei im Flash-Dateisystem
oder auf der SD-Karte aufgelistet.

LIST PINS Listet den aktuellen Status aller Pins auf dem Prozessor auf.

LIST SYSTEM I2C Listet eine Übersicht aller I2C-Geräte auf, die mit dem System-I2C-Bus
verbunden sind.

LIST COMMANDS

oder

LIST FUNCTIONS

Zeigt alle gültigen Befehle oder Funktionen an

LIST VARIABLES [s%()] Zeigt alle globalen Variablen und Konstanten an. Wenn der Befehl in einer
Subroutine aufgerufen wird, werden auch die Variablen angezeigt, die von dieser
Subroutine und allen sie aufrufenden Subroutinen verwendet werden. Wenn der
optionale Parameter s$() verwendet wird, werden die Variablen so aufgelistet, dass
s%() als Longstring behandelt wird (siehe Befehl LONGSTRING).

LMID(array%(),start
[,num])=string$

Fügt „string$“ an der Stelle „start“ in den langen String „array%()“ ein und ersetzt
dabei „num“ vorhandene Zeichen. Wenn „num“ nicht angegeben ist, wird es
anhand der Länge von „string$“ berechnet.
„num“ kann 0 sein. In diesem Fall wird „string$“ an der angegebenen Stelle
eingefügt.

Seite156 PicoMite-Benutzerhandbuch

LOAD file$ [,R] Lädt ein Programm namens „file$” aus dem Flash-Dateisystem oder von der SD-
Karte in den Programmspeicher.

Wenn das optionale Suffix ,R hinzugefügt wird, wird das Programm sofort ohne
Aufforderung ausgeführt (in diesem Fall muss „file$“ eine String-Konstante sein).
Der Befehl RUN macht dasselbe und erlaubt die Verwendung einer String-
Variablen.

Wenn keine Erweiterung angegeben ist, wird „.BAS“ an den Dateinamen
angehängt.

LOAD CONTEXT [KEEP] Stellt den Variablenbereich auf den zuvor gespeicherten Zustand zurück und
behält optional die gespeicherten Variablen bei, um bei Bedarf ein zweites
LOAD zu ermöglichen.

Siehe auch SAVE CONTEXT

LOAD IMAGE/BMP fname$
[,x] [,y] [,mode] [,ximage]
[,yimage]

Lädt eine BMP-Datei aus „fname$“ und schreibt sie auf das aktuelle
Ausgabegerät (Anzeige oder Framebuffer), beginnend bei „x“, „y“
(Standardwert ist 0,0).
Der optionale Parameter „mode” gibt an, ob die Ausgabe gedithert werden soll.

Die Bits 0 und 1 legen das Ausgabeformat fest, und Bit 2 bestimmt die Art des
zu verwendenden Ditherings.
Standardmäßig ist der Modus auf -1 gesetzt, was bedeutet, dass kein Dithering
angewendet werden soll.
DITHER_FLOYD_STEINBERG_RGB121 0
DITHER_FLOYD_STEINBERG_RGB222 1
DITHER_FLOYD_STEINBERG_RGB332 2
DITHER_ATKINSON_RGB121 4
DITHER_ATKINSON_RGB222 5
DITHER_ATKINSON_RGB332 6
„ximage” und „yimage” sagen, wo in der Bilddatei mit dem Schreiben auf den
Bildschirm angefangen werden soll (Standard ist 0,0). Wenn keine Erweiterung
angegeben wird, wird „.BMP” an den Dateinamen angehängt.

Alle Arten des BMP-Formats werden unterstützt, einschließlich Schwarzweiß-
und Echtfarben-24-Bit-Bildern.

LOAD JPG file$ [, x] [, y]
[,mode] [,ximage] [,yimage]

Lädt eine JPG-Datei von „fname$“ und schreibt sie auf das aktuelle
Ausgabegerät (Display oder Framebuffer), beginnend bei „x“, „y“
(Standardwert ist 0,0).
Der optionale Parameter „mode“ sagt, ob die Ausgabe gedithert werden soll.
Die Bits 0 und 1 legen das Ausgabeformat fest, und Bit 2 bestimmt die Art des
zu verwendenden Ditherings.
Standardmäßig ist der Modus auf -1 gesetzt, was bedeutet, dass kein Dithering
angewendet werden soll.
DITHER_FLOYD_STEINBERG_RGB121 0
DITHER_FLOYD_STEINBERG_RGB222 1
DITHER_FLOYD_STEINBERG_RGB332 2
DITHER_ATKINSON_RGB121 4
DITHER_ATKINSON_RGB222 5
DITHER_ATKINSON_RGB332 6
„ximag” und „yimage” sagen, wo in der Bilddatei mit dem Schreiben auf den
Bildschirm angefangen werden soll (Standard ist 0,0).

Wenn keine Erweiterung angegeben wird, wird „.JPG“ an den Dateinamen
angehängt.

Progressive JPG-Bilder werden nicht unterstützt.

PicoMite Benutzerhandbuch Seite 157

LOAD PNG fname$ [, x] [, y]
[,transparent] [,alphacut]

NUR RP2350-VERSIONEN

Lädt und zeigt eine PNG-Datei „fname“ an.

Wenn keine Dateiendung angegeben wird, wird automatisch „.png“ an den
Dateinamen angehängt.

Die Datei muss im RGBA8888-Format vorliegen, was die normale
Standardeinstellung ist. Wenn angegeben, geben „x” und „y” an, wo auf dem
Display oder im Framebuffer das Bild angezeigt wird.

Der optionale Parameter „transparent” (Standardwert 0) gibt einen der
Farbcodes (0–15) an, die den Pixeln in der PNG-Datei mit einem Alpha-Wert
unter „alphacut” (Standardwert 20) zugewiesen werden. Wenn „transparent”
auf -1 gesetzt ist, wird das PNG-Bild so geschrieben, dass Pixel mit einem
Alpha-Wert unter „alphacut” komplett weggelassen werden.

LOCAL variable [, variables]

Die vollständige Syntax
findest du unter DIM.

Definiert eine Liste von Variablennamen als lokal für die Subroutine oder
Funktion. Dieser Befehl verwendet genau die gleiche Syntax wie DIM und
erstellt Variablen, die nur innerhalb der Subroutine oder Funktion sichtbar
sind. Sie werden automatisch gelöscht, wenn die Subroutine oder Funktion
beendet wird.

LOCATION Legt einen manuellen Standort (Breitengrad/Längengrad) und eine Zeit für die
Verwendung mit dem Befehl ASTRO fest.

Dies ist einer von mehreren Befehlen, die hochpräzise astronomische
Berechnungen durchführen, die für die Ausrichtung oder Navigation von
Teleskopen geeignet sind. Eine detaillierte Beschreibung findest du in der
Datei GPS_Astro_Reference.pdf, die im ZIP-Archiv mit der Firmware
enthalten ist.

LONGSTRING Die LONGSTRING-Befehle ermöglichen die Bearbeitung von Zeichenfolgen,
die länger als die normale MMBasic-Grenze von 255 Zeichen sind.

Variablen zum Speichern langer Zeichenfolgen müssen als eindimensionale
Integer-Arrays definiert werden, wobei die Anzahl der Elemente auf die
Anzahl der Zeichen festgelegt wird, die für die maximale Zeichenfolgenlänge
erforderlich sind, geteilt durch acht. Der Grund für die Division durch acht ist,
dass jede Ganzzahl in einem MMBasic-Array acht Bytes belegt. Beachte, dass
die Routinen für lange Zeichenfolgen nicht auf Überlauf in der Länge der
Zeichenfolgen prüfen. Wenn versucht wird, eine Zeichenfolge zu erstellen, die
länger ist als die Größe einer Variablen für lange Zeichenfolgen, ist das
Ergebnis undefiniert.

LONGSTRING AES128
ENCRYPT/DECRYPT
CBC/ECB/CTR key$/key[!/%]
(), in%(), out%() [,iv$/iv[!/%]
()]

Verschlüsselt oder entschlüsselt die Longstring in in%() und speichert das
Ergebnis in out%().

Für die Modi CBC und CTR erzeugt die Verschlüsselung einen zufälligen
Initialisierungsvektor und hängt out%() mit dem IV vor. Wenn ein expliziter
IV angegeben wird, wird dieser anstelle des zufälligen Vektors verwendet und
an out%() angehängt.

Bei der CBC- und CTR-Entschlüsselung geht die Firmware davon aus, dass die
ersten 16 Bytes von in%() der Initialisierungsvektor sind.

Wenn du eine Nachricht ohne IV übertragen willst, kannst du LONGSTRING
RIGHT verwenden, um den IV vor dem Senden der Nachricht zu entfernen. In
diesem Fall muss der Empfänger sowohl den IV als auch den Schlüssel kennen
und einen vollständigen -Longstring erstellen, bevor er DECRYPT verwenden
kann. Dies kann mit LONGSTRING CONCAT erfolgen, um die eingehende
Nachricht zu einem Longstring hinzuzufügen, der den IV enthält.

LONGSTRING APPEND
array%(), string$

Fügt eine normale MMBasic-Zeichenkette an eine Longstring-Variable an.
„array%()” ist eine Longstring-Variable, während „string$” ein normaler
MMBasic-Zeichenkettenausdruck ist.

Seite158 PicoMite-Benutzerhandbuch

LONGSTRING BASE64
ENCODE/DECODE in%(),
out%()

Diese Funktion codiert oder decodiert den Longstring in in%() mit BASE64
und speichert das Ergebnis in out%(). Das als Ausgabe verwendete Array muss
im Verhältnis zur Eingabe und zur Richtung groß genug sein. Durch die
Codierung wird die Länge um 4/3 erhöht, durch die Decodierung um 3/4
verringert.

LONGSTRING CLEAR array
%()

Löscht die Longstring-Variable „array%()”. Das heißt, sie wird auf eine leere
Zeichenfolge gesetzt.

LONGSTRING COPY dest%
(), src%()

Kopiere eine lange Zeichenfolge in eine andere. „dest%()” ist die Zielvariable
und „src%()” ist die Quellvariable. Der Inhalt von „dest%()” wird
überschrieben.

LONGSTRING CONCAT
dest%(), src%()

Füge eine lange Zeichenfolge an eine andere an. „dest%()“ ist die Zielvariable
und „src%()“ ist die Quellvariable. „src%()“ wird an das Ende von „dest%()“
angehängt (das Ziel wird nicht überschrieben).

LONGSTRING LCASE array
%()

Wandelt alle Großbuchstaben in „array%()“ in Kleinbuchstaben um. „array%
()“ muss eine lange Zeichenfolgenvariable sein.

LONGSTRING LEFT dest%
(), src%(), nbr

Kopiert die ersten 'nbr' Zeichen von 'src%()' nach 'dest%()' und überschreibt
alles, was sich in 'dest%()' befand. , d. h. Kopieren vom Anfang von 'src%()'.
'src%()' und 'dest%()' müssen Long-String-Variablen sein. 'nbr' muss eine
ganzzahlige Konstante oder ein Ausdruck sein.

LONGSTRING LOAD array
%(), nbr, string$

Kopiert 'nbr' Zeichen von „string$” in die lange Zeichenfolgenvariable „array%
()” und überschreibt dabei alles, was sich in „array%()” befand.

LONGSTRING MID dest%(),
src%(), start, nbr

Kopiert 'nbr' Zeichen von 'src%()' nach 'dest%()', beginnend bei der
Zeichenposition 'start', und überschreibt dabei den bisherigen Inhalt von 'dest%
()'. Kopiert also aus der Mitte von 'src%()'. „nbr” ist optional. Wenn es
weggelassen wird, werden die Zeichen von „start” bis zum Ende der
Zeichenkette kopiert. „src%()” und „dest%()” müssen lange
Zeichenkettenvariablen sein. „start” und „nbr” müssen ganzzahlige Konstanten
oder Ausdrücke sein.

LONGSTRING PRINT [#n,]
src%() [;]

Druckt die in „src%()“ gespeicherte Longstring in die Datei oder den COM-
Port, die bzw. der als „#n“ geöffnet ist. Wenn „#n“ nicht angegeben ist, wird
die Ausgabe an die Konsole gesendet. Füge ein Semikolon hinzu, um CR/LF
zu unterdrücken.

LONGSTRING REPLACE
array%() , string$, start

Ersetzt Zeichen in der normalen MMBasic-Zeichenkette „string$“ in einer
vorhandenen langen Zeichenkette „array%()“, beginnend an der Position
„start“ in der langen Zeichenkette.

LONGSTRING RESIZE addr
%(), nbr

Setzt die Größe des Longstrings auf „nbr”. Das überschreibt die Größe, die von
anderen Longstring-Befehlen festgelegt wurde, also sei vorsichtig damit.
Typischerweise wird das benutzt, wenn man einen Longstring als Byte-Array
verwenden will.

LONGSTRING RIGHT dest%
(), src%(), nbr

Kopiert die rechten „nbr” Zeichen von „src%()” nach „dest%()” und
überschreibt dabei den Inhalt von „dest%()”. Das heißt, es wird vom Ende von
„src%()” kopiert. „src%()” und „dest%()” müssen Longstring-Variablen sein.
„nbr” muss eine ganzzahlige Konstante oder ein Ausdruck sein.

LONGSTRING SETBYTE
addr%(), nbr, data

Setzt das Byte „nbr” auf den Wert „data”, wobei „nbr” die Option BASE
berücksichtigt.

PicoMite Benutzerhandbuch Seite 159

LONGSTRING TRIM array%
(), nbr

Schneidet „nbr“ Zeichen vom Anfang einer langen Zeichenkette ab. „array%()“
muss eine lange Zeichenfolgenvariable sein. „nbr“ muss eine ganzzahlige
Konstante oder ein Ausdruck sein.

LONGSTRING UCASE array
%()

Wandelt alle Kleinbuchstaben in „array%()” in Großbuchstaben um. „array%
()” muss eine lange Zeichenfolgenvariable sein.

LOOP [UNTIL Ausdruck] Beendet eine Programmschleife: siehe DO.

MAP

NUR HDMI-VERSION

Mit den MAP-Befehlen kann der Programmierer die Farben festlegen, die in 4-
oder 8-Bit-Farbmodi verwendet werden. Jeder Wert in der 4- oder 8-Bit-
Farbpalette kann auf eine unabhängige 24-Bit-Farbe (d. h. RGB555-Format)
eingestellt werden. Weitere Infos findest du unter der MAP-Funktion.

MAP(n) = rgb% Damit wird allen Pixeln mit dem 4- oder 8-Bit-Farbwert „n” die 24-Bit-Farbe
„rgb%” zugewiesen. Die Änderung wird nach dem Befehl MAP SET aktiviert.

MAP MAXIMITE Damit wird die Farbtabelle auf die Farben eingestellt, die im ursprünglichen
Colour Maximite verwendet wurden.

MAP GREYSCALE Damit wird die Farbtabelle auf 16 oder 32 Graustufen gesetzt (je nach MODE).
MAP GRAYSCALE ist auch okay.

MAP SET Damit wird MMBasic dazu gebracht, die Farbtabelle (festgelegt mit
MAP(n)=rgb%) während des nächsten Austastintervalls zu aktualisieren.

MAP RESET Damit wird die Farbtabelle auf die Standardfarben zurückgesetzt.

MAP

PICOMITE RP2350 NUR GEPUFFERTE TREIBER

Mit den MAP-Befehlen kann der Programmierer die Farben festlegen, die im
8-Bit-RGB332-Farbmodus verwendet werden. Jeder Wert in der 8-Bit-
Farbpalette kann auf eine unabhängige 24-Bit-Farbe (d. h. RGB888-Format)
eingestellt werden. Weitere Infos findest du unter der MAP-Funktion.

MAP(n) = rgb% Damit wird allen Pixeln mit dem 8-Bit-Farbwert „n” die 24-Bit-Farbe „rgb%”
zugewiesen. Die Änderung wird nach dem Befehl MAP SET aktiviert.

MAP SET Dadurch aktualisiert MMBasic die Farbtabelle (festgelegt mit MAP(n)=rgb%)
während des nächsten Austastintervalls.

MAP RESET Damit wird die Farbtabelle auf die Standardfarben zurückgesetzt.

MAP

NUR VGA-VERSION

Mit den MAP-Befehlen kann der Programmierer die Farben auswählen, die in
4-Bit-Farbmodi verwendet werden. Jeder Wert in der 4-Bit-Farbpalette kann
auf eine der 16 verfügbaren Farben eingestellt werden. Weitere Infos findest du
unter der MAP-Funktion.

MAP(n) = rgb% Dadurch wird allen Pixeln mit dem 4-Bit-Farbwert „n” die 24-Bit-Farbe „rgb
%” zugewiesen. Der RGB-Wert wird in eine der verfügbaren 16 VGA-
RGB121-Farben umgewandelt, die durch das Widerstandsnetzwerk festgelegt
sind. Die Änderung wird nach dem Befehl „MAP SET” aktiviert.

Seite160 PicoMite-Benutzerhandbuch

MAP MAXIMITE Damit wird die Farbtabelle auf die Farben eingestellt, die im ursprünglichen
Colour Maximite verwendet wurden.

MAP SET Dadurch aktualisiert MMBasic die Farbtabelle (festgelegt mit MAP(n)=rgb%)
während des nächsten Austastintervalls.

MAP RESET Damit wird die Farbtabelle auf die Standardfarben zurückgesetzt, die im 4-Bit-
Modus wie folgt lauten:

„n” Farbe Wert
15 WEISS RGB(255, 255, 255)
14 GELB RGB(255, 255, 0)
13 LILA RGB(255, 128, 255)
12 BRAUN RGB(255, 128, 0)
11 FUCHSIA RGB(255, 64, 255)
10 ROST RGB(255, 64, 0)
9 MAGENTA RGB(255, 0, 255)
8 ROT RGB(255, 0, 0)
7 CYAN RGB(0, 255, 255)
6 GRÜN RGB(0, 255, 0)
5 CERULEAN RGB(0, 128, 255)
4 MITTLERES GRÜN RGB(0, 128, 0)
3 KOBALT RGB(0, 64, 255)
2 MYRTLE RGB(0, 64, 0)
1 BLAU RGB(0, 0, 255)
0 SCHWARZ RGB(0, 0, 0)

MATH

MATH RANDOMIZE [n]

Einfache Array-Arithmetik

MATH SET nbr, array()

MATH SCALE in(),
scale ,out()

MATH ADD in(), num ,out()

MATH INTERPOLATE in1(),
in2(), Verhältnis, out()

Der Befehl „math“ macht viele einfache mathematische Berechnungen, die
man in BASIC programmieren kann, aber es ist schneller, Schleifenstrukturen
in der Firmware zu programmieren, und es ist auch besser, weil sie nach dem
Debuggen für alle da sind, ohne dass man das Rad neu erfinden muss. Hinweis:
Zweidimensionale mathematische Matrizen werden immer mit DIM
matrix(n_columns, n_rows) angegeben, und natürlich entsprechen die
Dimensionen OPTION BASE. Quaternionen werden als Array mit 5
Elementen w, x, y, z, magnitude gespeichert.

Sät den Mersenne-Twister-Algorithmus.
Wenn n nicht angegeben ist, ist der Startwert die Zeit in Mikrosekunden seit
dem Start.
Der Mersenne-Twister-Algorithmus liefert viel bessere Zufallszahlen als die
integrierte Funktion der C-Bibliothek. Hinweis: Der RP2350 hat einen H/W-
Zufallszahlengenerator.

Siehe ARRAY SET

Skaliert die Matrix in() um den Skalarwert scale und speichert das Ergebnis in
out(). Funktioniert für Arrays beliebiger Dimensionen, sowohl für Ganzzahlen
als auch für Gleitkommazahlen, und kann zwischen diesen konvertieren. Die
Einstellung b auf 1 ist optimiert und die schnellste Methode, um ein gesamtes
Array zu kopieren.

Siehe ARRAY ADD

Dieser Befehl wendet die folgende Gleichung auf jedes Array-Element an:
out = (in2 - in1) * ratio + in1
Arrays können beliebig viele Dimensionen haben, müssen aber unterschiedlich

PicoMite Benutzerhandbuch Seite 161

MATH WINDOW in(),
minout, maxout, out() [,minin!,
maxin!]

MATH SLICE Quellarray(),
[d1] [,d2] [,d3] [,d4] [,d5] ,
Zielarray()

MATH INSERT Zielarray(),
[d1] [,d2] [,d3] [,d4] [,d5] ,
Quellarray()

MATH POWER inarray(),
potenz, outarray()

MATH SHIFT inarray%(),
nbr, outarray%() [,U]

Matrix-Arithmetik

MATH M_INVERSE array!(),
inversearray!()

MATH M_PRINT array()

MATH M_TRANSPOSE in(),
out()

MATH M_MULT in1(), in2(),
out()

Vektor-Arithmetik

MATH V_PRINT array()
[,hex]

MATH V_NORMALISE
inV(), outV()

MATH V_MULT matrix(),
inV(), outV()

MATH V_CROSS inV1(),

sein und die gleiche Gesamtzahl an Elementen haben. Der Befehl funktioniert
mit ganzzahligen und Gleitkomma-Arrays in beliebiger Kombination.

Dieser Befehl nimmt das Array „in” und skaliert es zwischen „minout” und
„maxout”, wobei das Ergebnis in „out” zurückgegeben wird. Optional kann er
auch die minimalen und maximalen Gleitkommawerte aus den Originaldaten
zurückgeben („minin!” und „maxin!”). Hinweis: „minout” kann größer als
„maxout” sein. In diesem Fall werden die Daten sowohl skaliert als auch
invertiert.
Dieser Befehl kann das Skalieren von Daten für die Darstellung usw. erheblich
vereinfachen.
Beispiel:
DIM IN(2)=(1,2,3)
DIM OUT(2)
MATH WINDOW IN(),7,3,OUT(),LOW,HIGH
Gibt OUT(0)=7, OUT(1)=5,OUT(2)=3,LOW=1,HIGH=3 zurück

Siehe ARRAY SLICE

Siehe ARRAY INSERT

Hebt jedes Element in „inarray()” auf die angegebene „Potenz” und speichert
das Ergebnis in „outarray()”.

Dieser Befehl verschiebt alle Elemente von inarray%() um ein Bit und
speichert das Ergebnis in outarray%() (kann mit inarray%()) übereinstimmen.
nbr kann zwischen -63 und 63 liegen. Positive Zahlen werden nach links
verschoben (mit der Potenz von 2 multipliziert). Negative Zahlen werden nach
rechts verschoben. Der optionale Parameter ,U erzwingt eine vorzeichenlose
Verschiebung.

Dies gibt die Umkehrung von array!() in inversearray!() zurück. Das Array
muss quadratisch sein, und du bekommst eine Fehlermeldung, wenn das Array
nicht umgekehrt werden kann (Determinante = 0). array!() und inversearray!()
können nicht identisch sein.

Schneller Mechanismus zum Drucken einer 2D-Matrix mit einer Zeile pro
Zeile.

Transponiere die Matrix in() und speichere das Ergebnis in matrix out(). Beide
Arrays müssen 2D sein, müssen aber nicht quadratisch sein. Wenn sie nicht
quadratisch sind, müssen die Arrays die Dimensionen in(m,n) out(n,m) haben.

Multipliziere die Arrays in1() und in2() und speichere das Ergebnis in out()c.
Alle Arrays müssen 2D sein, müssen aber nicht quadratisch sein. Wenn sie
nicht quadratisch sind, müssen die Arrays die Dimensionen in1(m,n)
in2(p,m) ,out(p,n) haben.

Schneller Mechanismus zum Drucken eines kleinen Arrays in einer einzigen
Zeile. „hex” druckt in Hexadezimal.

Seite162 PicoMite-Benutzerhandbuch

inV2(), outV()

MATH V_ROTATE x, y, a,
xin(), yin(), xout(), yout()

Quaternion-Arithmetik

MATH Q_INVERT inQ(),
outQ()

MATH Q_VECTOR x, y, z,
outVQ()

MATH Q_CREATE theta, x,
y, z, outRQ()

MATH Q_EULER
Gierwinkel, Neigungswinkel,
Rollwinkel, outRQ()

MATH Q_MULT inQ1(),
inQ2(), outQ()

MATH Q_ROTATE , RQ(),
inVQ(), outVQ()

Konvertiert einen Vektor inV() in eine Einheitsskala und speichert das
Ergebnis in outV().
(sqr(x*x + y*y +....)=1
Die Anzahl der Elemente im Vektor ist nicht begrenzt.

Multipliziert matrix() und den Vektor inV() und gibt den Vektor outV()
zurück. Die Vektoren und die 2D-Matrix können beliebig groß sein, müssen
aber die gleiche Kardinalität haben.

Berechnet das Kreuzprodukt zweier Vektoren mit drei Elementen inV1() und
inV2() und speichert das Ergebnis in outV().

Dieser Befehl dreht die Koordinatenpaare in „xin()” und „yin()” um den durch
„x” und „y” definierten Mittelpunkt um den Winkel „a” und speichert die
Ergebnisse in „xout()” und „yout()”. Hinweis: Die Eingabe- und Ausgabe-
Arrays können identisch sein, und der Drehwinkel ist standardmäßig in
Radianten angegeben, kann aber mit dem Befehl OPTION ANGLE geändert
werden.

Invertiert das Quaternion in inQ() und speichert das Ergebnis in outQ().

Konvertiert einen durch x, y und z angegebenen Vektor in einen normalisierten
Quaternion-Vektor outVQ() mit der ursprünglichen Größe.

Erzeugt einen normalisierten Rotationsquaternion outRQ(), um Quaternion-
Vektoren um die Achsen x, y, z um einen Winkel von theta zu drehen. Theta
wird in Radianten angegeben.

Erzeugt ein normalisiertes Rotationsquaternion outRQ(), um Quaternion-
Vektoren entsprechend den definierten Gier-, Neigungs- und Rollwinkeln zu
drehen
Wenn der Vektor vor dem „Betrachter” liegt, schaut Yaw von der Spitze des
Vektors und dreht sich im Uhrzeigersinn, Pitch dreht die Spitze von der
Kamera weg und Roll dreht sich um die z-Achse im Uhrzeigersinn.
Die Gier-, Neigungs- und Rollwinkel sind standardmäßig in Radianten
angegeben, berücksichtigen aber die Einstellung von OPTION ANGLE.

Multipliziert zwei Quaternionen inQ1() und inQ2() und speichert das Ergebnis
in outQ().

Dreht den Quaternion-Vektor inVQ() um den Drehquaternion RQ() und
speichert das Ergebnis in outVQ()

MATH C_ADD array1(), array2(), array3()

MATH C_SUB array1(), array2(), array3()

MATH C_MUL array1(), array2(), array3()

MATH C_DIV array1(), array2(), array3()

MATH C_AND array1(), array2(), array3()

MATH C_OR array1(), array2(), array3()

MATH C_XOR array1(), array2(), array3()

Diese Befehle machen Zelle-für-Zelle-Operationen an
Arrays.

array1 und array2 sind die Parameter und array3 ist die
Ausgabe. Alle Arrays müssen die gleiche Größe und den
gleichen Typ haben (Float oder Integer).

Es gibt keine Einschränkungen hinsichtlich der Anzahl
der Dimensionen und keine Einschränkungen hinsichtlich
der Verwendung desselben Arrays zweimal oder sogar
dreimal in den Parametern.

Beispiel: MATH C_MUL a%(),a%(),a%()
quadriert alle Werte im Array a%()

PicoMite Benutzerhandbuch Seite 163

MATH FFT signalarray!(),
FFTarray!()

Führt eine schnelle Fourier-Transformation der Daten in „signalarray!“ durch.
„signalarray“ muss ein Fließkommawert sein und die Größe muss eine Potenz
von 2 sein (z. B. s(1023), wenn OPTION BASE Null ist).

„FFTarray” muss ein Fließkommawert sein und die Dimension 2*N haben,
wobei N gleich dem Signalarray ist (z. B. f(1,1023), wenn OPTION BASE
Null ist).

Der Befehl gibt die FFT als komplexe Zahlen zurück, wobei der Realteil in
f(0,n) und der Imaginärteil in f(1,n) liegt.

MATH FFT INVERSE
FFTarray!(), signalarray!()

Führt eine inverse schnelle Fourier-Transformation der Daten in „FFTarray!”
durch. „FFTarray” muss ein Fließkommawert sein und die Dimension 2*N
haben, wobei N eine Potenz von 2 sein muss (z. B. f(1,1023), wenn OPTION
BASE gleich Null ist), mit dem Realteil in f(0,n) und dem Imaginärteil in
f(1,n).

„signalarray” muss ein Gleitkommawert sein und die einzelne Dimension muss
mit dem FFT-Array übereinstimmen.

Der Befehl gibt den Realteil der inversen Transformation in „signalarray“
zurück.

MATH FFT MAGNITUDE
signalarray!(),magnitudearray!
()

Erzeugt Amplituden für Frequenzen für die Daten in „signalarray!”.

„signalarray“ muss ein Fließkommawert sein und die Größe muss eine Potenz
von 2 sein (z. B. s(1023), wenn OPTION BASE gleich Null ist).
„magnitudearray“ muss ein Fließkommawert sein und die Größe muss mit der
des Signal-Arrays übereinstimmen.

Der Befehl gibt die Amplitude des Signals bei verschiedenen Frequenzen nach
der folgenden Formel zurück:

Frequenz an der Array-Position N = N * Abtastfrequenz / Anzahl der
Abtastwerte

MATH FFT PHASE
signalarray(), phasearray()

Erzeugt Phasen für Frequenzen für die Daten in „signalarray!“.

„signalarray” muss ein Fließkommawert sein und die Größe muss eine Potenz
von 2 sein (z. B. s(1023), wenn OPTION BASE Null ist). „phasearray” muss
ein Fließkommawert sein und die Größe muss die gleiche sein wie die des
Signal-Arrays.

Der Befehl gibt den Phasenwinkel des Signals bei verschiedenen Frequenzen
gemäß der obigen Formel zurück.

MATH SENSORFUSION Typ
ax, ay, az, gx, gy, gz, mx, my,
mz, pitch, roll, yaw [,p1] [,p2]

Typ kann MAHONY oder MADGWICK sein.

Ax, ay und az sind die Beschleunigungen in den drei Richtungen und sollten in
Einheiten der Standardbeschleunigung angegeben werden.

Gx, gy und gz sind die Momentanwerte der Drehgeschwindigkeit, die in
Radianten pro Sekunde angegeben werden sollten.

Mx, my und mz sind die Magnetfelder in den drei Richtungen und sollten in
Nano-Tesla (nT) angegeben werden.

Es muss darauf geachtet werden, dass die x-, y- und z-Komponenten zwischen
den drei Eingaben konsistent sind. Bei Verwendung des MPU-9250 sind
beispielsweise ax, ay, az, gx, gy, gz, my, mx, -mz basierend auf den
Messwerten des Sensors die richtigen Eingaben.

Pitch, Roll und Yaw sollten Fließkomma-Variablen sein und die Ausgaben der
Sensorfusion enthalten.

Die SENSORFUSION-Routine misst automatisch die Zeit zwischen
aufeinanderfolgenden Aufrufen und nutzt diese für ihre internen
Berechnungen.

Der Madwick-Algorithmus nimmt einen optionalen Parameter p1. Dieser wird
als Beta in der Berechnung verwendet. Wenn er nicht angegeben wird, ist der

Seite164 PicoMite-Benutzerhandbuch

Standardwert 0,5.

Der Mahony-Algorithmus nimmt zwei optionale Parameter p1 und p2. Diese
werden als Kp und Ki in der Berechnung verwendet. Wenn sie nicht angegeben
werden, sind die Standardwerte 10,0 bzw. 0,0.

Ein vollständiges Beispiel für die Verwendung des Codes findest du im
BackShed-Forum unter: https://www.thebackshed.com/forum/ViewTopic.php?
TID=13459&PID=166962#166962

MATH SINC x_in(), y_in(),
n , m, window, freq, x_out(),
y_out()

MATH SINC x_in(), y_in(), n,
window, freq, x_out(), y_out()

Wende einen Fenster-Sinc-Filter an, um Koordinatendaten zu glätten oder zu
interpolieren.

Ein Sinc-Filter ist ein idealer Tiefpassfilter, der hochfrequente Störgeräusche
entfernt und gleichzeitig die Signalform beibehält. Er eignet sich besonders gut
für die Neuberechnung (Interpolation).

Parameter:
x_in(), y_in() Eingabe-Koordinaten-Arrays (Float)

n Anzahl der Eingabepunkte

m Anzahl der Ausgabepunkte (optional). Wenn
weggelassen oder m=n: Glättungsmodus (Ausgabegröße
n). Wenn m!=n: Interpolations-/Resampling-Modus
(Ausgabegröße m)

Fenster Filterkernelgröße (muss ungerade sein; gerade Werte
werden erhöht). Typische Werte: 15 bis 101. Größere
Werte sorgen für eine schärfere Trennlinie, sind aber
langsamer.

freq Normalisierte Grenzfrequenz (0,0 < Freq <= 0,5). 0,5 ist
die Nyquist-Frequenz (keine Filterung). Typische Werte:
0,1 (starke Glättung) bis 0,4 (leichte Glättung).

 x_out(), y_out() Ausgabe-Koordinaten-Arrays (müssen groß genug sein,
um die Ausgabe aufzunehmen)

MATH PID INIT-Kanal,
pid_params!(), Callback

Dieser Befehl richtet einen PID-Regler ein, der automatisch im Hintergrund
laufen kann. Bis zu 8 PID-Regler können gleichzeitig laufen (Kanäle 1 bis 8).

„callback” ist eine MMbasic-Subroutine, die mit der durch die Abtastzeit
definierten Rate aufgerufen wird. Details dazu, was in der Subroutine enthalten
sein sollte, findest du in der Funktion MATH(PID …).

Das Array pid_params!() muss für alle aufgelisteten Elemente dimensioniert
werden, einschließlich der Reglerspeicherparameter (DIM pid_params!(13)),
und mit den erforderlichen Einstellungen initialisiert werden.

PID-Konfiguration

Element 0 = Kp

Element 1 = Ki

Element 2 = Kd

Element 3 = tau ' Zeitkonstante des derivativen Tiefpassfilters

Element 4 = limMin 'Ausgangsbegrenzungen

Element 5 = limMax

Element 6 = limMinInt 'Integrator-Grenzen

Element 7 = limMaxInt

Element 8 = T 'Abtastzeit (in Sekunden)

Controller „Speicher“

Element 9 = Integrator

Element 10 = prevError

Element 11 = Differenzierer

PicoMite Benutzerhandbuch Seite 165

https://www.thebackshed.com/forum/ViewTopic.php?TID=13459&PID=166962%23166962
https://www.thebackshed.com/forum/ViewTopic.php?TID=13459&PID=166962%23166962

MATH PID START-Kanal

MATH PID STOP-Kanal

Element 12 = vorherigeMessung

Element 13 = Ausgang

Startet einen vorher initialisierten PID-Regler auf dem angegebenen Kanal

Stoppt einen vorher initialisierten PID-Regler auf dem angegebenen Kanal und
löscht die internen Datenstrukturen

Siehe https://www.thebackshed.com/forum/ViewTopic.php?
FID=16&TID=17263

Ein Beispiel für die Einrichtung und den Betrieb eines PID-Reglers findest du
unter

MATH AES128
ENCRYPT/DECRYPT
CBC/ECB/CTR key$/key(),
in$/in(), out$/out() [,iv$/iv()]

Dieser Befehl verschlüsselt oder entschlüsselt die Daten in „in” und speichert
das Ergebnis unter Verwendung der angegebenen AES128-
Verschlüsselungsmethode in „out”.

Die Parameter können jeweils eine Zeichenfolge, ein Integer-Array oder ein
Float-Array sein, wobei jede Kombination möglich ist.

Der Schlüssel muss 16 Elemente lang sein (16*8=128 Bit), „in” und „out”
müssen ein Vielfaches von 16 Elementen lang sein. Wenn „out” als
Zeichenfolge angegeben wird (z. B. out$), muss die Zeichenfolgenvariable
vorhanden sein und sollte auf leer gesetzt werden (DIM out$="").

Die maximale Anzahl von Elementen in „in” und „out” ist durch den Speicher
begrenzt, wenn sie als Arrays definiert sind. Zeichenfolgen für die
Verschlüsselung sind auf 240 Byte (EBR) und 224 Byte (CTR und CBC)
begrenzt.

Für die CBC- und CTR-Verschlüsselung kannst du optional einen
Initialisierungsvektor „iv” angeben. „iv” muss 16 Elemente lang sein
(16*8=128 Bit). Wenn kein Initialisierungsvektor angegeben wird, generiert
die Verschlüsselung einen zufälligen Initialisierungsvektor.

In beiden Fällen wird der IV vor die Ausgabe gesetzt.

Bei CBC und CTR müssen die ersten 16 Elemente der Eingabe der
Initialisierungsvektor sein, damit die Entschlüsselung klappt.

Wenn du eine Nachricht ohne IV übertragen willst, solltest du den IV vor dem
Senden der Nachricht mit Standard-MMBasic-Manipulationen entfernen. In
diesem Fall muss der Empfänger sowohl den IV als auch die Schlüssel en
kennen und eine vollständige Nachricht erstellen, bevor er DECRYPT
verwendet, indem er den IV an die eingehende Nachricht anhängt.

MEMORY Zeigt die aktuell belegte Speichermenge an. Beispiel:
Programm:
 0K (0%) Programm (0 Zeilen)
 180K (100 %) Frei

Gespeicherte Variablen:
 16K (100 %) Frei

RAM:
 0K (0 %) 0 Variablen
 0K (0 %) Allgemein
 228 KB (100 %) frei

Hinweise:

 Die Speicherauslastung wird auf die nächsten 1K Byte gerundet.

 Der allgemeine Speicher (RAM) wird von Arrays, Strings, seriellen E/A-
Puffern usw. genutzt.

Seite166 PicoMite-Benutzerhandbuch

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263

MEMORY SET Adresse,
Byte, Anzahl der Bytes

MEMORY SET BYTE
Adresse, Byte, Anzahl der
Bytes

MEMORY SET SHORT
Adresse, Short, Anzahl der
Shorts

MEMORY SET WORD
Adresse, Wort, Anzahl der
Wörter

MEMORY SET INTEGER
Adresse, Integerwert, Anzahl
der Integer [,Inkrement]

MEMORY SET FLOAT
Adresse, Fließkommawert,
Anzahl der Fließkommawerte
[,Inkrement]

Dieser Befehl setzt einen Speicherbereich auf einen bestimmten Wert.

BYTE = Ein Byte pro Speicheradresse.

SHORT = Zwei Bytes pro Speicheradresse.

WORD = Vier Bytes pro Speicheradresse.

FLOAT = Acht Bytes pro Speicheradresse.

„increment” ist optional und regelt, wie der Zeiger „address” bei der
Ausführung der Operation erhöht wird. Wenn zum Beispiel increment=3 ist,
wird nur jedes dritte Element des Ziels gesetzt. Der Standardwert ist 1.

MEMORY COPY
Quelladresse, Zieladresse,
Anzahl der Bytes
[,Quellinkrement]
[,Zielinkrement]

MEMORY COPY INTEGER
Quelladresse, Zieladresse,
Anzahl der Ganzzahlen
[,Quellinkrement]
[,Zielinkrement]

MEMORY COPY FLOAT
Quelladresse, Zieladresse,
Anzahl der Fließkommazahlen
[,Quellinkrement]
[,Zielinkrement]

Dieser Befehl kopiert einen Speicherbereich in einen anderen.

COPY INTEGER und FLOAT kopieren acht Bytes pro Vorgang.

„sourceincrement” ist optional und regelt, wie der Zeiger „sourceaddress”
während der Ausführung der Operation erhöht wird. Wenn zum Beispiel
sourceincrement=3 ist, wird nur jedes dritte Element der Quelle kopiert. Der
Standardwert ist 1.

„destinationincrement” funktioniert ähnlich und wirkt sich auf den Zeiger
„destinationaddress” aus.

MEMORY PRINT #]fnbr ,
nbr, address%/array()

MEMORY INPUT [#]fnbr ,
nbr, address%/array()

Diese Befehle speichern oder lesen „nbr“ Datenbytes aus dem Speicher oder in
einen offenen Datei auf der Festplatte.

Der zu speichernde Speicher kann als ganzzahliges Array angegeben werden.
In diesem Fall wird die Anzahl der zu speichernden oder zu lesenden Bytes mit
der Array-Größe verglichen. Alternativ kann eine Speicheradresse verwendet
werden. In diesem Fall findet keine Überprüfung statt, und Benutzerfehler
können zu einem Absturz der Firmware führen.

PicoMite Benutzerhandbuch Seite 167

MEMORY PACK
source%()/sourceaddress%,
dest%()/destaddress%,
number, size

MEMORY UNPACK source
%()/sourceaddress%, dest%
()/destaddress%, number, size

Mit Memory pack und unpack können ganzzahlige Werte aus einem Array in
ein anderes komprimiert oder von einem in das andere dekomprimiert werden.

Die beiden Arrays sind immer normale Integer-Arrays, aber das gepackte
Array kann 2, 4, 8, 16 oder 64 Werte „enthalten”. So kann ein einzelnes
Integer-Array-Element 2 32-Bit-Wörter, 4 16-Bit-Werte, 8 Bytes, 16 Nibbles
oder 64 Boolesche Werte (Bits) speichern.

„number“ gibt die Anzahl der zu packenden oder zu entpackenden Werte an
und „size“ gibt die Anzahl der Bits (1, 4, 8, 16 oder 32) an.

Alternativ können Speicheradressen verwendet werden. In diesem Fall kann
keine Überprüfung stattfinden, und Benutzerfehler könnten zu einem Absturz
der Firmware führen.

MKDIR dir$ Erstellt das Verzeichnis „dir$“ im Standard-Flash-Dateisystem oder auf der
SD-Karte.

MID$(str$, start, num) = str2$ Die „num“ Zeichen in „str$“, beginnend an der Position „start“, werden durch
die Zeichen in „str2$“ ersetzt. „num“ kann auf 0 gesetzt werden, d. h. die neue
Zeichenfolge wird an der angegebenen Position eingefügt. Wenn „num“ nicht
angegeben ist, wird standardmäßig die Länge von „str2$“ verwendet.

MODUS 1

oder

MODUS 2

oder

MODUS 3 (nur RP2350)

Nur VGA-Versionen

VGA-Video unterstützt mehrere Auflösungen (siehe OPTION AUFLÖSUNG).
Dieser Befehl wählt den Modus „n” je nach Auflösung aus:

OPTION AUFLÖSUNG 640 x 480

MODUS 1 640 x 480 x 2 Farben (monochrom). Standard bei Start.
Die Breite der Kacheln ist auf 8 Pixel festgelegt. Die Höhe der
Kacheln ist standardmäßig auf 12 Pixel eingestellt, kann aber
zwischen 8 und MM.HRES liegen. Die Farben der Kacheln
werden mit der Standardnotation RGB888 angegeben. Diese wird
in RGB121 umgewandelt. Ein Framebuffer (F) und ein Layer-
Puffer (L) können erstellt werden. Diese haben keinen Einfluss
auf die Anzeige und verbrauchen keinen Benutzerspeicher,
können aber beide zum Erstellen von Bildern und zum Kopieren
auf den Bildschirm (N) verwendet werden.

MODUS 2 320 x 240 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und verbraucht keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht
keinen Benutzerspeicher. Alle in den Ebenenpuffer geschriebenen
Pixel werden automatisch auf dem Display angezeigt und
überlagern alles, was sich im Hauptdisplaypuffer befindet. Es
kann eine Farbe festgelegt werden (0-15: Standardwert ist 0), die
nicht angezeigt wird, sodass der Hauptdisplaypuffer
durchscheinen kann. Mit der Map-Funktion können die Standard -
Farben der 16 verfügbaren Farben überschrieben werden. Die
Hardware ist auf die 16 Farben beschränkt, die durch das
Widerstandsnetzwerk definiert sind.

MODUS 3 640 x 480 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und verbraucht keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich

Seite168 PicoMite-Benutzerhandbuch

kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht
keinen Benutzerspeicher. Alle in den Ebenenpuffer geschriebenen
Pixel werden automatisch auf dem Display angezeigt und
überlagern alles, was sich im Hauptanzeigepuffer befindet. Es
kann eine Farbe festgelegt werden (0-15: Standardwert ist 0), die
nicht angezeigt wird, sodass der Hauptanzeigepuffer
durchscheinen kann. Mit der Map-Funktion können die
Standardfarben der 16 verfügbaren Farben überschrieben werden.
Die Hardware ist auf die 16 Farben beschränkt, die durch das
Widerstandsnetzwerk definiert sind.

OPTION AUFLÖSUNG 720 x 400

MODUS 1 720 x 400 x 2 Farben (monochrom). Standard bei Start.
Die Breite der Kacheln ist auf 8 Pixel festgelegt. Die Höhe der
Kacheln ist standardmäßig auf 12 Pixel eingestellt, kann aber
zwischen 8 und MM.HRES liegen. Die Farben der Kacheln
werden mit der Standardnotation RGB888 angegeben. Diese wird
in RGB121 umgewandelt. Ein Framebuffer (F) und ein Layer-
Puffer (L) können erstellt werden. Diese haben keinen Einfluss
auf die Anzeige und verbrauchen keinen Benutzerspeicher,
können aber beide zum Erstellen von Bildern und zum Kopieren
auf den Bildschirm (N) verwendet werden.

MODUS 2 360 x 200 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und verbraucht keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht
keinen Benutzerspeicher. Alle Pixel, die in den Ebenenpuffer
geschrieben werden, erscheinen automatisch auf dem Display und
liegen über allem, was sich im Hauptanzeigepuffer befindet. Es
kann eine Farbe angegeben werden (0-15: Standardwert ist 0), die
nicht angezeigt wird, sodass der Hauptanzeigepuffer
durchscheinen kann. Es gibt eine Zuordnungsfunktion, mit der die
Standardfarben der 16 verfügbaren Farben überschrieben werden
können. Bei VGA ist die Hardware auf die 16 Farben beschränkt,
die durch das Widerstandsnetzwerk definiert sind.

MODUS 3 720 x 400 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und belegt keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser belegt keinen
Benutzerspeicher. Alle Pixel, die in den Ebenenpuffer
geschrieben werden, werden automatisch auf dem Display
angezeigt und liegen über allem, was sich im Hauptanzeigepuffer
befindet. Es kann eine Farbe angegeben werden (0-15:
Standardwert ist 0), die nicht angezeigt wird, sodass der
Hauptanzeigepuffer durchscheinen kann. Mit der Map-Funktion
können die Standardfarben der 16 verfügbaren Farben
überschrieben werden. Bei VGA ist die Hardware auf die 16
Farben beschränkt, die durch das Widerstandsnetzwerk definiert
sind.

OPTION AUFLÖSUNG 800 x 600 (nur RP2350)

MODUS 1 800 x 600 x 2 Farben (monochrom). Standard beim Start.
Die Breite der Kacheln ist auf 8 Pixel festgelegt. Die Höhe der

PicoMite Benutzerhandbuch Seite 169

Kacheln ist standardmäßig auf 12 Pixel eingestellt, kann aber
zwischen 8 und MM.HRES liegen. Die Farben der Kacheln
werden mit der Standardnotation RGB888 angegeben. Diese wird
in RGB121 umgewandelt. Es können ein Framebuffer (F) und ein
Layer-Buffer (L) erstellt werden. Diese haben keinen Einfluss auf
die Anzeige und verbrauchen keinen Benutzerspeicher, aber beide
können zum Erstellen von Bildern und zum Kopieren auf den
Bildschirm (N) verwendet werden.

MODUS 2 400 x 300 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und verbraucht keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht
keinen Benutzerspeicher. Alle in den Ebenenpuffer geschriebenen
Pixel werden automatisch auf dem Display angezeigt und
überlagern alles, was sich im Hauptdisplaypuffer befindet. Es
kann eine Farbe festgelegt werden (0-15: Standardwert ist 0), die
nicht angezeigt wird, sodass der Hauptdisplaypuffer
durchscheinen kann. Mit der Map-Funktion können die
Standardfarben der 16 verfügbaren Farben überschrieben werden.
Die Hardware ist auf die 16 Farben beschränkt, die durch das
Widerstandsnetzwerk definiert sind.

MODUS 3 800 x 600 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und belegt keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht
keinen Benutzerspeicher. Alle in den Ebenenpuffer geschriebenen
Pixel werden automatisch auf dem Display angezeigt und
überlagern alles, was sich im Hauptanzeigepuffer befindet. Es
kann eine Farbe festgelegt werden (0-15: Standardwert ist 0), die
nicht angezeigt wird, sodass der Hauptanzeigepuffer
durchscheinen kann. Mit der Map-Funktion können die
Standardfarben der 16 verfügbaren Farben überschrieben werden.
Die Hardware ist auf die 16 Farben beschränkt, die durch das
Widerstandsnetzwerk definiert sind.

OPTION AUFLÖSUNG 848 x 480 (nur RP2350)

MODUS 1 848 x 480 x 2 Farben (monochrom). Standard beim Start.
Die Breite der Kacheln ist auf 8 Pixel festgelegt. Die Höhe der
Kacheln ist standardmäßig auf 12 Pixel eingestellt, kann aber
zwischen 8 und MM.HRES liegen. Die Farben der Kacheln
werden mit der Standardnotation RGB888 angegeben. Diese wird
in RGB121 umgewandelt. Es können ein Framebuffer (F) und ein
Layer-Buffer (L) erstellt werden. Diese haben keinen Einfluss auf
die Anzeige und verbrauchen keinen Benutzerspeicher, können
aber beide zum Erstellen von Bildern und zum Kopieren auf den
Bildschirm (N) verwendet werden.

MODUS 2 424 x 240 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und verbraucht keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht

Seite170 PicoMite-Benutzerhandbuch

keinen Benutzerspeicher. Alle in den Ebenenpuffer geschriebenen
Pixel werden automatisch auf dem Display angezeigt und
überlagern alles, was sich im Hauptanzeigepuffer befindet. Es
kann eine Farbe festgelegt werden (0-15: Standardwert ist 0), die
nicht angezeigt wird, sodass der Hauptanzeigepuffer
durchscheinen kann. Mit der Map-Funktion können die
Standardfarben der 16 verfügbaren Farben überschrieben werden.
Die Hardware ist auf die 16 Farben beschränkt, die durch das
Widerstandsnetzwerk definiert sind.

MODUS 3 848 x 48 x 16 Farben.
RGB121-Format (d. h. 1 Bit für Rot, 2 Bits für Grün und 1 Bit für
Blau). Ein Framebuffer (F) kann erstellt werden. Dieser hat
keinen Einfluss auf die Anzeige und verbraucht keinen
Benutzerspeicher, kann aber zum Erstellen von Bildern und zum
Kopieren auf den Bildschirm (N) verwendet werden. Zusätzlich
kann ein Layer-Puffer erstellt werden. Auch dieser verbraucht
keinen Benutzerspeicher. Alle in den Ebenenpuffer geschriebenen
Pixel werden automatisch auf dem Display angezeigt und
überlagern den Inhalt des Hauptanzeigepuffers (). Es kann eine
Farbe festgelegt werden (0-15: Standardwert ist 0), die nicht
angezeigt wird, sodass der Hauptanzeigepuffer durchscheinen
kann. Mit der Map-Funktion können die Standardfarben der 16
verfügbaren Farben überschrieben werden. Die Hardware ist auf
die 16 Farben beschränkt, die durch das Widerstandsnetzwerk
definiert sind.

MODUS n NUR HDMI-VERSIONEN

HDMI-Video unterstützt eine Reihe von Auflösungen (siehe OPTION
AUFLÖSUNG). Dieser Befehl wählt den Modus „n” je nach Auflösung aus:

OPTION AUFLÖSUNG 640 x 480

MODUS 1 640 x 480 x 2 Farben (monochrom). Standard bei Start.
Benutz den Befehl TILE wie gewohnt. Die Breite der Kacheln
ist auf 8 Pixel festgelegt. Die Höhe der Kacheln ist
standardmäßig auf 12 Pixel eingestellt, kann aber zwischen 8
und MM.HRES liegen. Die Farben der Kacheln werden mit
der Standardnotation RGB888 angegeben. Diese wird in
RGB555 umgewandelt. Es können ein Framebuffer (F) und
ein Layer-Puffer (L) erstellt werden. Diese können zum
Erstellen von Bildern und zum Kopieren auf den Bildschirm
(N) verwendet werden.

MODUS 2 320 x 240 x 16 Farben.
Ein Framebuffer (F) kann erstellt werden. Dieser kann zum
Erstellen von Bildern und zum Kopieren auf den Bildschirm
(N) verwendet werden. Zusätzlich kann ein Layer-Puffer
erstellt werden. Alle Pixel, die in den Layer-Puffer
geschrieben werden, erscheinen automatisch auf dem
Bildschirm und liegen über allem, was sich im
Hauptbildschirm-Puffer befindet. Es kann eine Farbe
angegeben werden (0-15: Standardwert ist 0), die nicht
angezeigt wird, sodass der Hauptbildschirm-Puffer
durchscheinen kann. Es gibt eine Zuordnungsfunktion, mit der
die Standardfarben überschrieben werden können.

MODUS 3 640 x 480 x 16 Farben.
Farbzuordnung zur RGB555-Palette. Ein Bildspeicher (F)
kann erstellt werden. Er kann zum Erstellen von Bildern und
zum Kopieren auf den Bildschirm (N) verwendet werden.
Zusätzlich kann ein Ebenenpuffer erstellt werden. Alle Pixel,

PicoMite Benutzerhandbuch Seite 171

die in den Ebenenpuffer geschrieben werden, werden
automatisch auf dem Display angezeigt und liegen über allem,
was sich im Hauptanzeigepuffer befindet. Es kann eine Farbe
angegeben werden (0-15: Standardwert ist 0), die nicht
angezeigt wird, sodass der Hauptanzeigepuffer durchscheinen
kann.

MODUS 4 320 x 240 x 32768 Farben.
Dies ist volles RGB555, wodurch Farbbilder in guter Qualität
angezeigt werden können. Ein Bildspeicher (F) und ein
Ebenenpuffer (L) können erstellt werden. Diese haben keinen
Einfluss auf die Anzeige und können zum Erstellen von
Bildern und zum Kopieren auf den Bildschirm (N) verwendet
werden. Es kann nur einer erstellt werden.

MODUS 5 320 x 240 x 256 Farben.
Ein Framebuffer (F) kann erstellt werden. Dieser hat keinen
Einfluss auf die Anzeige. Er kann zum Erstellen von Bildern
und zum Kopieren auf den Bildschirm (N) verwendet werden.
Zusätzlich kann ein Layer-Puffer erstellt werden. Dieser nutzt
keinen Benutzerspeicher. Alle Pixel, die in den Ebenenpuffer
geschrieben werden, werden automatisch auf dem Display
angezeigt und liegen über allem, was sich im
Hauptanzeigepuffer befindet. Es kann eine Farbe festgelegt
werden (0-255: Standardwert ist 0), die nicht angezeigt wird,
sodass der Hauptanzeigepuffer durchscheinen kann. Mit der
Zuordnungsfunktion können die Standardfarben der 256
verfügbaren Farben überschrieben werden. Jede der 256 Farben
kann einer beliebigen RGB555-Farbe zugeordnet werden.

OPTION AUFLÖSUNG 720 x 400

MODUS 1 720 x 400 x 2 Farben (monochrom). Standard beim Start.
Benutze den Befehl TILE wie gewohnt. Die Breite der
Kacheln ist auf 8 Pixel festgelegt. Die Höhe der Kacheln ist
standardmäßig auf 12 Pixel eingestellt, kann aber zwischen 8
und MM.HRES liegen. Die Farben der Kacheln werden mit
der Standard-RGB888-Notation angegeben. Diese wird in
RGB555 umgewandelt. Es können ein Framebuffer (F) und
ein Layer-Puffer (L) erstellt werden. Diese können zum
Erstellen von Bildern und zum Kopieren auf den Bildschirm
(N) verwendet werden.

MODUS 2 360 x 200 x 16 Farben.
Ein Framebuffer (F) kann erstellt werden. Dieser kann zum
Erstellen von Bildern und zum Kopieren auf den Bildschirm
(N) verwendet werden. Zusätzlich kann ein Layer-Puffer
erstellt werden. Alle Pixel, die in den Layer-Puffer
geschrieben werden, erscheinen automatisch auf dem
Bildschirm und liegen über allem, was sich im
Hauptbildschirm-Puffer befindet. Es kann eine Farbe
angegeben werden (0-15: Standardwert ist 0), die nicht
angezeigt wird, sodass der Hauptbildschirm-Puffer
durchscheinen kann. Es gibt eine Zuordnungsfunktion, mit der
die Standardfarben überschrieben werden können.

MODUS 3 720 x 400 x 16 Farben.
Farbzuordnung zur RGB555-Palette. Ein Bildspeicher (F)
kann erstellt werden. Er kann zum Erstellen von Bildern und
zum Kopieren auf den Bildschirm (N) verwendet werden.
Zusätzlich kann ein Ebenenpuffer erstellt werden. Alle Pixel,
die in den Ebenenpuffer geschrieben werden, werden
automatisch auf dem Display angezeigt und liegen über allem,

Seite172 PicoMite-Benutzerhandbuch

was sich im Hauptanzeigepuffer befindet. Es kann eine Farbe
angegeben werden (0-15: Standardwert ist 0), die nicht
angezeigt wird, sodass der Hauptanzeigepuffer durchscheinen
kann.

MODUS 4 360 x 200 x 32768 Farben.
Dies ist volles RGB555, wodurch Farbbilder in guter Qualität
angezeigt werden können. Ein Bildspeicher (F) und ein
Ebenenpuffer (L) können erstellt werden. Diese haben keinen
Einfluss auf die Anzeige und können zum Erstellen von
Bildern und zum Kopieren auf den Bildschirm (N) verwendet
werden. Es kann nur einer erstellt werden.

MODUS 5 360 x 200 x 256 Farben.
Ein Framebuffer (F) kann erstellt werden. Dies hat keine
Auswirkungen auf die Anzeige. Er kann zum Erstellen von
Bildern und zum Kopieren auf den Bildschirm (N) verwendet
werden. Zusätzlich kann ein Layer-Puffer erstellt werden.
Dieser belegt keinen Benutzerspeicher. Alle Pixel, die in den
Ebenenpuffer geschrieben werden, erscheinen automatisch auf
dem Display und liegen über allem, was sich im
Hauptanzeigepuffer befindet. Es kann eine Farbe angegeben
werden (0-255: Standardwert ist 0), die nicht angezeigt wird,
sodass der Hauptanzeigepuffer durchscheinen kann. Mit der
Zuordnungsfunktion können die Standardfarben der 256
verfügbaren Farben überschrieben werden. Jede der 256 Farben
kann einer beliebigen RGB555-Farbe zugeordnet werden.

OPTION AUFLÖSUNG 800 x 600 (Hinweis: reduziert den verfügbaren Heap-
Speicher)

MODUS 1 800 x 600 x 2 Farben mit RGB332-Kacheln (benutze den
Befehl TILE wie gewohnt)

MODUS 2 400 x 300 x 16 Farben mit optionaler Ebene und
Farbauftragung auf RGB332-Palette

MODUS 3 800 x 400 x 16 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

MODUS 5 400 x 300 x 256 Farben mit optionaler Ebene (kein
Speicherverbrauch)

OPTIONALE AUFLÖSUNG 848 x 480 (Anmerkung: reduziert den
verfügbaren Heap-Speicher)

MODUS 1 848 x 480 x 2 Farben mit RGB332-Kacheln (benutze den
Befehl TILE wie gewohnt)

MODUS 2 424 x 240 x 16 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

MODUS 3 848 x 480 x 16 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

MODUS 5 424 x 240 x 256 Farben mit optionaler Ebene (kein
Speicherverbrauch)

OPTIONALE AUFLÖSUNG 1280 x 720

MODUS 1 1280 x 720 x 2 Farben mit RGB332-Kacheln (benutze den
Befehl TILE wie gewohnt)

MODUS 2 320 x 180 x 16 Farben mit 2 optionalen Ebenen und
Farbabbildung auf RGB332-Palette

MODUS 3 640 x 360 x 16 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

MODUS 5 320 x 180 x 256 Farben mit optionaler Ebene (kein
Speicherverbrauch)

PicoMite Benutzerhandbuch Seite 173

OPTIONALE AUFLÖSUNG 1024 x 768

MODUS 1 1024 x 768 x 2 Farben mit RGB332-Kacheln (benutze den
Befehl TILE wie gewohnt)

MODUS 2 256 x 192 x 16 Farben mit 2 optionalen Ebenen und
Farbabbildung auf die RGB332-Palette

MODUS 3 512 x 384 x 16 Farben

MODUS 5 256 x 192 x 256 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

OPTIONALE AUFLÖSUNG 1024 x 600

MODUS 1 1024 x 600 x 2 Farben mit RGB332-Kacheln (benutze den
Befehl TILE wie gewohnt)

MODUS 2 256 x 150 x 16 Farben mit 2 optionalen Ebenen und
Farbabbildung auf RGB332-Palette

MODUS 3 512 x 300 x 16 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

MODUS 5 256 x 150 x 256 Farben mit optionaler Ebene und
Farbzuordnung zur RGB332-Palette

OPTIONALE AUFLÖSUNG 800 x 480 (Anmerkung: reduziert den
verfügbaren Heap-Speicher)

MODUS 1 800 x 480 x 2 Farben mit RGB332-Kacheln (benutze den
Befehl TILE wie gewohnt)

MODUS 2 400 x 240 x 16 Farben mit 2 optionalen Ebenen und
Farbabbildung auf RGB332-Palette

MODUS 3 800 x 480 x 16 Farben mit optionaler Ebene und
Farbabbildung auf RGB332-Palette

MODUS 5 400 x 240 x 256 Farben mit optionaler Ebene und
Farbzuordnung zur RGB332-Palette

MODUS 400

oder

MODUS 800

NUR RP2350 PICOMITE-VERSIONEN

Wechselt zwischen den Modi 400 x 240 und 800 x 480 für SSD1963-
Puffertreiber

MOUSE

MOUSE INTERRUPT
ENABLE Kanal, int

MOUSE INTERRUPT
DISABLE-Kanal

MOUSE SET Kanal, x-
Koordinate, y-Koordinate [,
Radanzahl]

Für alle Varianten des Befehls. Bei USB-Firmware ist „channel” der USB-
Anschluss, an den die Maus angeschlossen ist (1-4). Weitere Infos findest du
unter MM.INFO(USB n). Bei PS2-Firmware ist „channel” fest auf den Wert 2
eingestellt.

„int” ist eine benutzerdefinierte Subroutine, die aufgerufen wird, wenn die
linke Maustaste gedrückt wird.

Deaktiviert eine Unterbrechung der linken Maustaste

Legt die aktuelle Position fest, die von der Maus zurückgegeben wird: x, y und
optional die Positionen des Rads

MOUSE OPEN-Kanal,
CLKpin, DATApin

NICHT-USB-VERSIONEN – NUR FÜR EINE PS2-MAUS

Öffnet eine Verbindung zu einer PS2-Maus, die an die beiden angegebenen
Pins angeschlossen ist. Dieser Befehl kann in einem Programm verwendet
werden, um die Maus während der Ausführung des Programms zu

Seite174 PicoMite-Benutzerhandbuch

MOUSE CLOSE-Kanal

konfigurieren, im Gegensatz zu OPTION MOUSE, das die Maus dauerhaft
konfiguriert.

Der Kanal ist für die Kompatibilität mit der USB-Mausfunktionalität enthalten
und muss auf 2 gesetzt werden. Wenn keine Maus angeschlossen ist, wird eine
Fehlermeldung angezeigt, und der Befehl kann erneut aufgerufen werden,
sobald die Maus angeschlossen ist.

Schließt den Zugriff auf die Maus und stellt die Pins wieder auf normale
Verwendung zurück. Der Befehl gibt eine Fehlermeldung aus, wenn OPTION
MOUSE eingestellt wurde.

NEU Löscht den Programmspeicher und alle Variablen, einschließlich gespeicherter
Variablen.

NEXT [Zählervariable] [,
Zählervariable] usw.

NEXT kommt am Ende einer FOR-NEXT-Schleife; siehe FOR.

Die „Zählvariable” gibt genau an, welche Schleife gerade bearbeitet wird.
Wenn keine „Zählvariable” angegeben ist, geht NEXT automatisch zur
innersten Schleife. Man kann auch mehrere Zählvariablen angeben, wie hier:
 NEXT x, y, z

ON ERROR ABORT

oder

ON ERROR IGNORE

oder

BEI FEHLER
ÜBERSPRINGEN [nn]

oder

BEI FEHLER LÖSCHEN

Oder

BEI FEHLER NEU STARTEN

Hiermit wird festgelegt, was passiert, wenn während der Ausführung eines
Programms ein Fehler auftritt. Das gilt für alle von MMBasic gefundenen Fehler,
wie z. B. Syntaxfehler, falsche Daten, fehlende Hardware usw.

ON ERROR ABORT bewirkt, dass MMBasic eine Fehlermeldung anzeigt, das
Programm abbricht und zur Eingabeaufforderung zurückkehrt. Dies ist das
normale Verhalten und die Standardeinstellung, wenn ein Programm gestartet
wird.

ON ERROR RESTART führt dazu, dass MMBasic einen Hardware-Reset
durchführt, und wenn du OPTION AUTORUN eingestellt hast, wird das
Programm natürlich sauber neu gestartet.

ON ERROR IGNORE bewirkt, dass alle Fehler ignoriert werden.

ON ERROR SKIP ignoriert einen Fehler in einer Reihe von Befehlen
(angegeben durch die Zahl „nn”), die nach diesem Befehl ausgeführt werden.
„nn” ist optional, die Standardeinstellung ist eins, wenn nichts angegeben ist.
Nachdem die Anzahl der Befehle abgeschlossen ist (mit oder ohne Fehler), kehrt
MMBasic zum Verhalten von ON ERROR ABORT zurück.

Wenn ein Fehler auftritt und ignoriert/übersprungen wird, wird die
schreibgeschützte Variable MM.ERRNO auf einen Wert ungleich Null gesetzt
und MM.ERRMSG$ wird auf die Fehlermeldung gesetzt, die normalerweise
generiert würde. Diese werden durch ON ERROR CLEAR auf Null und eine
leere Zeichenfolge zurückgesetzt. Sie werden auch gelöscht, wenn das
Programm ausgeführt wird und wenn ON ERROR IGNORE und ON ERROR
SKIP verwendet werden.

ON ERROR IGNORE kann das Debuggen eines Programms sehr erschweren,
daher wird dringend empfohlen, nur ON ERROR SKIP zu verwenden.

ON KEY-Ziel

oder

ON KEY ASCIIcode, target

Die erste Version des Befehls setzt einen Interrupt, der die benutzerdefinierte
Subroutine „Ziel” aufruft, sobald ein oder mehrere Zeichen im Eingabepuffer der
seriellen Konsole warten.

Beachte, dass alle Zeichen, die im Eingabepuffer warten, in der Interrupt-
Subroutine gelesen werden sollten, da sonst automatisch ein weiterer Interrupt
erzeugt wird, sobald das Programm aus dem Interrupt zurückkehrt.

Mit der zweiten Version kannst du eine Interrupt-Routine mit einem bestimmten
Tastendruck verknüpfen. Das läuft auf einer niedrigen Ebene für die serielle
Konsole und wenn es aktiviert ist, wird die Taste nicht in den Eingabepuffer
gelegt, sondern löst nur den Interrupt aus. Es nutzt einen separaten Interrupt vom

PicoMite Benutzerhandbuch Seite 175

einfachen ON KEY-Befehl, sodass es bei Bedarf gleichzeitig genutzt werden
kann.

In beiden Varianten kannst du den Interrupt deaktivieren, indem du die Zahl Null
als Ziel verwendest, z. B.:

ON KEY 0. oder ON KEY ASCIIcode, 0

ON PS2 Ziel Dies löst einen Interrupt aus, sobald die PicoMite-Firmware eine Nachricht von
der PS2-Schnittstelle sieht.
Verwende MM.info(PS2), um die empfangene Rohmeldung zu melden. So
kann der Programmierer sowohl das Drücken als auch das Loslassen der Taste
erfassen.
Die Scancodes (Set 2) findest du unter https://wiki.osdev.org/PS/2_Keyboard.

ONEWIRE RESET-Pin

oder

ONEWIRE WRITE-Pin, Flag,
Länge, Daten [, Daten…]

oder

ONEWIRE READ Pin, Flag,
Länge, Daten [, Daten…]

Befehle für die Kommunikation mit 1-Wire-Geräten.

ONEWIRE RESET setzt den 1-Wire-Bus zurück

ONEWIRE WRITE sendet eine bestimmte Anzahl von Bytes

ONEWIRE READ liest eine bestimmte Anzahl von Bytes

„Pin” ist der zu verwendende I/O-Pin (befindet sich im hinteren Anschluss). Es
kann jeder Pin sein, der für digitale I/O geeignet ist.

„flag” ist eine Kombination aus den folgenden Optionen:

1 – Reset vor dem Befehl senden
2 – Reset nach Befehl senden
4 – Nur ein Bit statt eines Bytes an Daten senden/empfangen
8 – Starke Pullup-Funktion nach dem Befehl ausführen (der Pin wird auf High
gesetzt und Open Drain deaktiviert)

„length“ ist die Länge der zu sendenden oder zu empfangenden Daten

„data” sind die zu sendenden Daten oder die zu empfangende Variable. Die
Anzahl der Datenelemente muss mit dem Parameter „length” übereinstimmen.

Siehe auch Anhang C.

OPEN fname$ FOR mode AS
[#]fnbr

Öffnet eine Datei zum Lesen oder Schreiben.

„fname“ ist der Dateiname mit einer optionalen Erweiterung, die durch einen
Punkt (.) getrennt ist. Lange Dateinamen mit Groß- und Kleinbuchstaben
werden unterstützt. Das Dateisystem auf der SD-Karte unterscheidet NICHT
zwischen Groß- und Kleinschreibung, das Flash-Dateisystem hingegen schon.

Ein Verzeichnispfad kann mit einem Backslash als Verzeichnistrennzeichen
angegeben werden. Das übergeordnete Verzeichnis des aktuellen
Verzeichnisses kann mit dem Verzeichnisnamen „..“ (zwei Punkte) und das
aktuelle Verzeichnis mit „.“ (ein Punkt) angegeben werden.

Beispiel: OPEN ".\dir1\dir2\filename.txt" FOR INPUT AS #1

Der Modus kann INPUT, OUTPUT, APPEND oder RANDOM sein.

INPUT öffnet die Datei zum Lesen und gibt eine Fehlermeldung aus, wenn die
Datei nicht vorhanden ist. OUTPUT öffnet die Datei zum Schreiben und
überschreibt automatisch alle vorhandenen Dateien mit demselben Namen.

APPEND öffnet die Datei auch zum Schreiben, überschreibt aber keine
vorhandene Datei; stattdessen werden alle Schreibvorgänge an das Ende der
Datei angehängt. Wenn keine Datei vorhanden ist, verhält sich der Modus
APPEND wie der Modus OUTPUT (d. h. die Datei wird erstellt und dann zum
Schreiben geöffnet).

RANDOM öffnet die Datei zum Lesen und Schreiben und ermöglicht den
zufälligen Zugriff mit dem Befehl SEEK. Beim Öffnen wird der
Lese-/Schreibzeiger am Ende der Datei positioniert. Wenn die Datei nicht da
ist, wird sie erstellt.

„fnbr” ist die Dateinummer (1 bis 10). Das # ist optional. Bis zu 10 Dateien

Seite176 PicoMite-Benutzerhandbuch

können gleichzeitig geöffnet sein und sich entweder auf dem Laufwerk A: oder
C: oder auf beiden befinden. Die Befehle INPUT, LINE INPUT, PRINT,
WRITE und CLOSE sowie die Funktionen EOF() und INPUT$() von ,
verwenden alle „fnbr”, um die Datei zu identifizieren, die gerade bearbeitet
wird.

Siehe auch ON ERROR und MM.ERRNO für die Fehlerbehandlung.

OPEN comspec$ AS [#]fnbr Öffnet einen seriellen Kommunikationsport zum Lesen und Schreiben. Es
stehen zwei Ports zur Verfügung (COM1: und COM2:), die beide gleichzeitig
geöffnet werden können. Eine vollständige Beschreibung mit Beispielen
findest du in Anhang A.

Mit „fnbr” kann der Port mit jedem Befehl oder jeder Funktion, die eine
Dateinummer verwendet, zum Schreiben und Lesen genutzt werden.

OPEN comspec$ AS GPS

[,timezone_offset] [,monitor]

Öffnet einen seriellen Kommunikationsport zum Lesen von einem GPS-
Empfänger. Die Daten können dann mit der Funktion GPS() abgerufen
werden .

Das wird ausführlich in der Datei Option_GPS_User_Manual.pdf beschrieben,
die im ZIP-Archiv zum Herunterladen der Firmware enthalten ist.

OPTION Schau dir den Abschnitt „Optionen” weiter oben in diesem Handbuch an.

PAUSE delay Hält die Ausführung des laufenden Programms für „Verzögerung” ms an. Das
kann ein Bruchteil sein. Zum Beispiel entspricht 0,2 200 µs. Die maximale
Verzögerung beträgt 2147483647 ms (etwa 24 Tage).

Beachte, dass Interrupts während einer Pause erkannt und verarbeitet werden.

PIN(Pin) = Wert Bei einem als digitaler Ausgang konfigurierten „Pin“ wird der Ausgang auf
niedrig („Wert“ ist Null) oder hoch („Wert“ ist ungleich Null) gesetzt. Du
kannst einen Ausgang auf hoch oder niedrig setzen, bevor er als Ausgang
konfiguriert wird, und diese Einstellung ist dann die Standardausgabe, wenn
der Befehl SETPIN wirksam wird.

Siehe die Funktion PIN() zum Lesen von einem Pin und den Befehl SETPIN
zum Konfigurieren. Eine allgemeine Beschreibung der
Ein-/Ausgabefunktionen der PicoMite-Firmware findest du im Kapitel
„Verwendung der E/A-Pins”.

PIO Der Prozessorchip im Raspberry Pi Pico mit den RP2040-Prozessoren hat ein
programmierbares I/O-System mit zwei gleichen PIO-Geräten (pio%=0 oder
pio%=1), die wie spezielle CPU-Kerne funktionieren.

Der Raspberry Pi Pico 2 mit den RP2350-Prozessoren verfügt über drei PIO-
Geräte.

Eine detailliertere Beschreibung der Programmierung von PIOs findest du im
Anhang F.

Die PIO-Befehle werden wie MMBasic-Befehle behandelt.

Gültige Befehle sind:

jmp (<Bedingung>) <Ziel>

wait <Polarität> gpio <gpio_num>

wait <Polarität> pin <Pin-Nummer>

wait <Polarität> irq (vorherige | nächste) <irq_num> (rel)

wait <Polarität> jmppin (+ <Pin-Offset>)

in <Quelle>, <Bitanzahl>

out <Ziel>, <Bitanzahl>

Push (iffull)

push (iffull) block

PicoMite Benutzerhandbuch Seite 177

push (iffull) noblock

ziehen (wenn leer)

Pull (wenn leer) Block

ziehen (wenn leer) ohne Block

mov <Ziel>, (op) <Quelle>

irq (vorherige | nächste) <irq_num> (rel)

irq (vorherige | nächste) set <irq_num> (rel)

irq (vorherige | nächste) nowait <irq_num> (rel)

irq (vorherige | nächste) warte <irq_num> (rel)

irq (vorherige | nächste) löschen <irq_num> (rel)

set <Ziel>, <Wert>

Nur RP2350

mov rxfifo[y], isr

mov rxfifo[<index>], isr

mov osr, rxfifo[y] NB

mov osr, rxfifo[<Index>] Hinweis: Nur RP2350

Gültige Anweisungen:

.program name

.line n/next

.label name

.wrap Ziel

.wrap

.Seite festlegen n

.end program [Liste]

PIO-Befehle werden zwischen einem Befehl „PIO ASSEMBLE n” und einer
Anweisung „.end program” benutzt. Andere Anweisungen können auch
dazwischen stehen.

PIO assemble pio,linedata$ Dieser Befehl setzt textbasierten PIO-Assembler-Code zusammen und lädt ihn,
einschließlich Sprungmarken.

Verwendung: PIO assemble pio,".program anything", um den Assembler zu
starten.

Verwendung: PIO assemble pio,".side_set n [opt] [pindirs]", wenn Side Set
verwendet wird. Dies ist erforderlich, um die Op-Codes korrekt zu erstellen,
wenn ein oder mehrere Side-Set-Pins verwendet werden.

Das Pin-Control-Register wird nicht geladen, da es spezifisch für die
Zustandsmaschine ist.

Beachte auch, dass der Parameter „opt” den Op-Code bei Anweisungen mit
einem Side-Parameter ändert.

Verwendung: PIO assemble pio, „.line n“, um ab einer anderen Zeile als 1 zu
assemblieren – das ist optional.

Verwendung: PIO assemble pio,".end program [list]", um die Assemblierung
zu beenden und das PIO zu programmieren. Der optionale Parameter LIST
bewirkt eine Hex-Ausgabe der Op-Codes auf dem Terminal.

Verwendung: PIO assemble pio,"label:" zum Definieren einer Bezeichnung.
Dies muss als separater Befehl erscheinen.

Verwendung: PIO assemble „'.wrap target“, um anzugeben, wo das Programm

Seite178 PicoMite-Benutzerhandbuch

PIO DMA RX pio, sm, nbr,
data%() [,completioninterrupt]
[,transfersize]
[,loopbackcount]

PIO DMA TX pio, sm, nbr,
data%() [,completioninterrupt]
[,transfersize]
[,loopbackcount]

PIO DMA RX OFF

PIO DMA TX OFF

PIO INTERRUPT pio, sm
[,RXinterrupt] [,TXinterrupt]

PIO INIT MACHINE pio%,

Zustandsmaschine%,
Taktfrequenz

[,pinctrl] [,execctrl] [,shiftctrl]

[,startinstruction] [,sideout
[,setout] [,outout]

umbrechen soll. Siehe PIO(.wrap target) für die Verwendung.

Verwendung: PIO assemble „.wrap“, um anzugeben, wo das Programm von
„.wrap target“ zurückkehren soll. Informationen zur Verwendung findest du
unter PIO(.wrap).

Verwendung: PIO assemble pio "Befehl [Parameter]", um die eigentlichen
PIO-Befehle zu definieren, die in Maschinencode umgewandelt werden sollen.

Richtet DMA-Übertragungen von PIO zum MMBasic-Speicher ein.

pio gibt an, welche der beiden pio-Instanzen verwendet werden soll (0 oder 1).

sm gibt an, welche der Zustandsmaschinen verwendet werden soll (0-3).

nbr gibt an, wie viele 32-Bit-Wörter übertragen werden sollen. Sieh unten für
den Sonderfall, wenn nbr auf Null gesetzt wird.

data%() ist das Array, das die PIO-Daten entweder bereitstellt oder empfängt.

Der optionale Parameter completioninterrupt ist der Name einer MMBasic-
Subroutine, die aufgerufen wird, wenn die DMA abgeschlossen ist und im Fall
von DMA_OUT der FIFO geleert wurde.

Wenn der optionale Interrupt nicht verwendet wird, kann der Status des DMA
mit den folgenden Funktionen überprüft werden:

 MM.INFO(PIO RX DMA)

 MM.INFO(PIO TX DMA)

Der optionale Parameter transfersize ermöglicht es dem Benutzer, die
normalen 32-Bit-Übertragungen zu überschreiben und 8, 16 oder 32
auszuwählen.

Der optionale Parameter loopbackcount gibt an, wie viele Datenelemente
gelesen oder geschrieben werden sollen, bevor der DMA am Anfang des
Puffers wieder von vorne beginnt.

Der Parameter muss eine Potenz von 2 zwischen 2 und 32768 sein.

Wegen einer Einschränkung im RP2040/RP2350 muss das MMBasic-Array im
Speicher an die Anzahl der Bytes in der Schleife angepasst werden, wenn
loopbackcount benutzt wird.

Wenn das Array also 64 Ganzzahlen lang ist, was 512 Bytes entspricht, muss
das Array im Speicher an einer 512-Byte-Grenze ausgerichtet werden.

Alle MMBasic-Arrays sind auf eine Grenze von 256 Byte ausgerichtet, aber
um ein Array zu erstellen, das garantiert auf eine Grenze von 512 Byte oder
mehr ausgerichtet ist, muss der Befehl PIO MAKE RING BUFFER verwendet
werden.

Wenn „loopbackcount“ gesetzt ist, kann „nbr“ auf 0 gesetzt werden. In diesem
Fall läuft die Übertragung kontinuierlich und füllt den Puffer wiederholt, bis
sie explizit gestoppt wird.

Wenn „nbr” und „loopbackcount” beide angegeben und identisch sind, startet
der DMA nach Abschluss automatisch neu (nur TX).

Bricht einen laufenden DMA ab.

Legt grundlegende Interrupts für PIO-Aktivitäten fest.

Verwende den Wert 0 für RXinterrupt oder TXinterrupt, um einen Interrupt zu
deaktivieren.

Nicht benötigte Werte weglassen.

Der RX-Interrupt wird ausgelöst, wenn ein Wort vom PIO-Code in den
angegebenen FIFO „geschoben“ wurde. Die Daten MÜSSEN im Interrupt
gelesen werden, um ihn zu löschen.

PicoMite Benutzerhandbuch Seite 179

Der TX-Interrupt wird ausgelöst, wenn der angegebene FIFO VOLL ist und
der PIO-Code ihn nun „gezogen” hat.

Initialisiert PIO „pio%” mit der Zustandsmaschine „statemachine%”.
„clockspeed” ist die Taktrate der Zustandsmaschine in kHz. Die ersten vier
optionalen Argumente sind Variablen, die die Initialisierungswerte der
Zustandsmaschinenregister und die Adresse der ersten auszuführenden
Anweisung enthalten (Standardwert ist Null). Diese bestimmen, wie die PIO
funktioniert.

sideout, setout und outout können auf 0 (Standard) oder 1 gesetzt werden, um
anzugeben, ob die in pinctrl definierten Pins als Eingänge (0) oder Ausgänge
(1) initialisiert werden sollen.

PIO EXECUTE pio,
state_machine, instruction%

Führt die Anweisung sofort auf dem angegebenen pio und der angegebenen
Zustandsmaschine aus.

PIO WRITE pio,
state_machine, count, data0
[,data1..]

Schreibt die Datenelemente in die angegebene PIO und Zustandsmaschine. Der
Schreibvorgang ist blockierend, daher muss die Zustandsmaschine in der Lage
sein, die bereitgestellten Daten zu übernehmen.

Hinweis: Dieser Befehl wird in zukünftigen Versionen wahrscheinlich
zusätzliche Funktionen brauchen.

PIO WRITEFIFO a,b,c,d Schreibt in eines der 4 einzelnen FIFO-Register.

„a” ist der PIO (0 oder 1), „b” ist die Zustandsmaschine (0...3), „c” ist das
FIFO-Register *0…3) und „d” sind die Daten% (32-Bit-Ganzzahlwert).

PIO READ pio,
state_machine, count, data%
[()]

Liest die Datenelemente aus dem angegebenen pio und der angegebenen
Zustandsmaschine. Das Lesen ist nicht blockierend, daher muss die
Zustandsmaschine in der Lage sein, die angeforderten Daten bereitzustellen.
Wenn count eins ist, kann eine Ganzzahl zum Empfangen der Daten verwendet
werden, andernfalls sollte ein Ganzzahl-Array angegeben werden.

Hinweis: Dieser Befehl wird in zukünftigen Versionen wahrscheinlich
zusätzliche Funktionen brauchen.

PIO START pio, statemachine

PIO STOP pio, statemachine

PIO CLEAR pio

Startet eine bestimmte Zustandsmaschine auf pio.

Stoppt eine bestimmte Zustandsmaschine auf pio.

Das stoppt die auf allen Zustandsmaschinen angegebene pio und setzt die
Steuerregister und Interrupt-Flags für die Zustandsmaschinen PINCTRL,
EXECTRL und SHIFTCTRL auf die Standardwerte zurück.

PIO PROGRAM pio

PIO PROGRAM pio,array%()

PIO PROGRAM LINE pio,
line, instruction

Sagt, dass die nächsten Zeilen PIO-Assembler-Befehle für das PIO „pio” sind,
bis eine „.end program”-Anweisung kommt.

Programmier den ganzen pio-Programmspeicher mit den Daten in array%().
Sieh Anhang F.

Programmier nur die angegebene Zeile in einem PIO-Programm.

Seite180 PicoMite-Benutzerhandbuch

PIO SYNC pio,
Zustandsmaschinen,
[,vorherige
Zustandsmaschinen] [,nächste
Zustandsmaschinen]

Synchronisiert die Uhren der PIO-Zustandsmaschinen
„pio” gibt den Referenz-PIO für den Befehl an.
„statemachines”, „prevstatemachines” und „nextstatemachines” sind Bitmaps
(0 bis 15), die angeben, welche Zustandsmaschinenuhren synchronisiert
werden sollen.
Um also festzulegen, dass alle Zustandsmaschinen von PIO0 und PIO1
synchronisiert werden sollen, könntest du Folgendes verwenden:
PIO SYNC 0,15,,15
oder
PIO SYNC 1,15,15

PIO SET BASE 0/16 PIO-Befehle funktionieren nur mit 32 GPIO-Ports. Beim RP2350B sagt dieser
Befehl dem System, dass es GP0-GP31 (0) oder GP16-GP47 (16) verwenden
soll.

PIO CONFIGURE pio, sm,
clock [,startaddress]
[,sidesetbase] [,sidesetno]
[,sidesetout]
[,setbase] [,setno] [,setout]
[,outbase] [,outno] [,outout]
[,inbase]
[,jmppin] [,wraptarget] [,wrap]
[,sideenable] [,sidepindir]
[,pushthreshold]
[,pullthreshold] [,autopush]
[,autopull] [,inshiftdir]
[,outshiftdir]
[,joinrxfifo] [,jointxfifo]
[,joinrxfifoget] [,joinrxfifoput]

Die Parameter in diesem Befehl sind im Grunde die gleichen, die du im Befehl
PIO INIT verwenden würdest, plus die Hilfsfunktionen PINCTRL,
SHIFTCTRL und EXECCTRL, aber alles in einem einzigen Befehl
zusammengefasst. Das ist nötig, weil das Pico SDK im Hintergrund ein paar
clevere Sachen macht, um die RP2350B-Schnittstelle zu verwalten.
„sidesetbase”, „sidebase outbase”, „inbase” und „jmppin” sind Pin-
Definitionen. Du kannst diese entweder als GPno oder als Pin-Nummer (z. B.
GP3 oder 5) angeben. Gib in jedem Fall den tatsächlichen Pin an. Wenn also
PIO SET BASE für diesen PIO auf 16 gesetzt ist, sind die Werte GP16 bis
GP47 gültig. Wenn PIO SET BASE nicht gesetzt oder auf 0 gesetzt ist, sind
die Pins GP0 bis GP31 gültig. Sie sind alle standardmäßig auf den Basiswert
gesetzt, mit Ausnahme von „jmppin” (Standardwert -1), das explizit gesetzt
werden muss, wenn du ein „jmppin” verwenden möchtest, da dies die
Einstellung des erforderlichen Statusbits auslöst.
„clock” ist die gewünschte PIO-Taktrate in Hz.
„startaddress” ist die PIO-Anweisung, die die Ausführung startet –
Standardwert ist 0.
„sidesetno”, „setno” und „outno” geben die Anzahl der Pins an, die für diese
Funktionen verwendet werden können – Standardwert ist 0.
„sidesetout”, „setout” und „outout” sagen, ob diese Pins als Ausgänge
konfiguriert werden sollen (1=ja, 0=nein) – Standardwert ist 0
„wraptarget“ und „wrap“ liegen im Bereich von 0 bis 31 und sind
standardmäßig auf 0 und 31 eingestellt.
„inshiftdir“ und „outshiftdir“ sind standardmäßig auf 1 gesetzt – verschiebt das
Ausgangs-Schieberegister nach rechts und das Eingangs-Schieberegister nach
rechts (Daten kommen von links rein).
Alle anderen Parameter sind Boolesche Werte, die eine bestimmte Funktion
aktivieren können – 1 zum Aktivieren, 0 zum Deaktivieren – alle sind
standardmäßig auf 0 gesetzt.

Einfaches Beispiel:

'PIO Konfigurieren Sie pio, sm, clock, startaddress,
'sidesetbase, sidesetno, sidesetout,
'setbase, setno, setout, outbase, outno, outout, inbase,
'jmppin, wraptarget, wrap, sideenable, sidepindir,
'pushthreshold, pullthreshold, autopush, autopull, inshiftdir, outshiftdir,
'joinrxfifo, jointxfifo, joinrxfifoget, joinrxfifoput
PIO-Assembler 1
.Programmtest
.Zeile 0
.wrap Ziel
Pins setzen,1
Pins setzen, 0
.wrap

PicoMite Benutzerhandbuch Seite 181

.end program
SetPin gp45,pio1
PIO-Basis 1,16 setzen
PIO konfigurieren 1,0,1000000,,,,,gp45,1,1,,,,,,Pio(.wrap Ziel),Pio(.wrap)
PIO starten 1,0
Ausführen
Schleife

Obwohl der Befehl PIO CONFIGURE viele Parameter hat, ist er echt einfach
zu benutzen, wenn du diesen einfachen Ansatz wählst: Kopiere die
Kommentarzeilen aus dem Beispiel in dein Programm. Ersetze für jeden
Parameter den gewünschten Wert oder lösche den Parameter, ohne die
Kommas zu verändern.
Wenn du alle Ersetzungen gemacht hast, lösch alle nachstehenden Kommas.
Wenn die Zeile dann zu lang für den Editor ist, lösch die CRs nacheinander,
beginnend am Ende der vorletzten Zeile und nach oben arbeitend.
Auf diese Weise erhältst du einen gültigen Befehl, der einfach einzugeben und
zu bearbeiten ist.

Hinweis: Du kannst auch Fortsetzungszeilen verwenden, um die Bearbeitung
zu vereinfachen (siehe OPTION CONTINUATION LINES).

PIXEL x, y [,c] Lege einen Pixel auf einem Videoausgang oder einem angeschlossenen LCD-
Bildschirm auf eine Farbe fest.

 „x” ist die horizontale Koordinate und „y” die vertikale Koordinate des Pixels.
„c” ist eine 24-Bit-Zahl, die die Farbe angibt. „c” ist optional. Wenn es
weggelassen wird, wird die aktuelle Vordergrundfarbe verwendet.

Alle Parameter können als Arrays ausgedrückt werden, und die Software
zeichnet die Anzahl der Pixel entsprechend den Abmessungen des kleinsten
Arrays. „x” und „y” müssen entweder beide Arrays oder beide einzelne
Variablen/Konstanten sein, sonst wird ein Fehler ausgegeben. „c” kann
entweder ein Array oder eine einzelne Variable oder Konstante sein.

Eine Definition der Farben und Grafikkoordinaten findest du im Kapitel
Grafikbefehle und -funktionen.

PLAY Dieser Befehl erzeugt verschiedene Audioausgaben.

Siehe den Befehl OPTION AUDIO zum Einstellen der für die Ausgabe zu
verwendenden I/O-Pins. Das Audiosignal ist ein pulsweitenmoduliertes Signal
(PWM), sodass ein Tiefpassfilter erforderlich ist, um die Trägerfrequenz zu
entfernen.

PLAY TONE links, rechts
[,dauer] [,unterbrechen]

Erzeugt zwei separate Frequenzen auf den linken und rechten Kanälen der
Audioausgabe.

„left” und „right” sind die Frequenzen in Hz, die für den linken und rechten
Kanal verwendet werden sollen. Der Ton wird im Hintergrund abgespielt (das
Programm läuft nach diesem Befehl „ ” weiter) und „dur” gibt die Anzahl der
Millisekunden an, die der Ton erklingen soll. Wenn die Dauer nicht angegeben
wird, wird der Ton so lange abgespielt, bis er explizit gestoppt wird oder das
Programm beendet wird.

„interrupt“ ist eine optionale Subroutine, die aufgerufen wird, wenn die
Wiedergabe beendet wird.

Die Frequenz kann zwischen 1 Hz und 20 kHz liegen und ist sehr genau (sie
basiert auf einem Quarzoszillator). Die Frequenz kann jederzeit durch einen
neuen Befehl PLAY TONE geändert werden.

Seite182 PicoMite-Benutzerhandbuch

PLAY FLAC file$ [, interrupt]

PLAY WAV file$ [, interrupt]

PLAY ARRAY l%(), r%(),
freq [,start] [,end]
[,terminationinterrupt]

Spielt eine FLAC-Datei über den Soundausgang ab.

„file$” ist die abzuspielende FLAC-Datei (die Erweiterung .flac wird
angehängt, falls sie fehlt). Die Abtastrate kann bis zu 48 kHz in Stereo
betragen (96 kHz, wenn der Pico übertaktet ist).

Die FLAC-Datei wird im Hintergrund abgespielt. 'interrupt' ist optional und ist
der Name einer Subroutine, die aufgerufen wird, wenn die Datei fertig
abgespielt ist.

Wenn file$ ein Verzeichnis auf dem Laufwerk B: ist, spielt der Pico alle
Dateien in diesem Verzeichnis nacheinander ab.

Spielt eine WAV-Datei über den Soundausgang ab.

„file$” ist die abzuspielende WAV-Datei (die Erweiterung .wav wird
angehängt, falls sie fehlt). Die WAV-Datei muss PCM-codiert in Mono oder
Stereo mit 8 oder 16 Bit Abtastrate sein. Die Abtastrate kann bis zu 48 kHz in
Stereo betragen (96 kHz, wenn der Pico übertaktet ist).

Die WAV-Datei wird im Hintergrund abgespielt. „interrupt” ist optional und
ist der Name einer Subroutine, die aufgerufen wird, wenn die Datei fertig
abgespielt ist.

Gibt Daten über den Audioausgang aus, indem Daten in einem oder zwei
Arrays verwendet werden:

Dafür braucht man gepackte Arrays „l%” und „r%” (können für links und
rechts dasselbe Array sein) mit 16-Bit-Werten im Bereich von -32768 bis
32767 und gibt die Werte im Array mit der angegebenen Abtastfrequenz aus.
Wenn der optionale Parameter „start“ angegeben wird, werden die Arrays ab
der gepackten Position „start“ ausgegeben.
Wenn der optionale Parameter „end” angegeben wird, werden die Arrays bis
zum Erreichen der gepackten Position „end” ausgegeben.
Wenn der optionale Parameter „terminationinterrupt” angegeben wird, wird die
Subroutine
ausgeführt, sobald das letzte Array-Element ausgegeben wurde.
Es ist wichtig, den Parameter „freq” zu verstehen.
Das ist die Rate, mit der jedes Array-Element ausgegeben wird.
Wenn das Array zum Beispiel 10 Zyklen einer Sinuswelle mit insgesamt 18000
Samples enthält, würde die Einstellung der Frequenz auf 1800 eine 1-Hz-
Sinuswelle für 10 Sekunden ausgeben. Die Einstellung der Frequenz auf 18000
würde eine 10-Hz-Sinuswelle für 1 Sekunde ausgeben.

PLAY MP3 file$ [, interrupt]

PLAY MODFILE Datei$ [,
Unterbrechung]

Spielt eine MP3-Datei über den Soundausgang ab (NUR RP2350).

„file$” ist die abzuspielende MP3-Datei (die Erweiterung .mp3 wird
angehängt, falls sie fehlt). Die Abtastrate kann bis zu 48 kHz betragen.

Die MP3-Datei wird im Hintergrund abgespielt. „interrupt” ist optional und ist
der Name einer Subroutine, die aufgerufen wird, wenn die Datei fertig
abgespielt ist.

Wenn file$ ein Verzeichnis auf Laufwerk B: ist, spielt der Pico alle Dateien in
diesem Verzeichnis nacheinander ab.

Spielt eine MOD-Datei über den Soundausgang ab.
„file$” ist die abzuspielende MOD-Datei (die Erweiterung .mod wird
angehängt, falls sie fehlt).
Die MOD-Datei läuft im Hintergrund und wird in einer Endlosschleife („ “)
abgespielt. Wenn die optionale Option „interrupt“ angegeben ist, wird diese
aufgerufen, sobald die Datei einmal durchgespielt wurde, und die Wiedergabe
wird dann beendet. Dieser Befehl nutzt vorzugsweise Speicherplatz im
PSRAM, wenn er für den Dateipuffer aktiviert ist (nur RP2350). In diesem Fall

PicoMite Benutzerhandbuch Seite 183

PLAY MODSAMPLE
Samplenum, channel
[,volume]

PLAY LOAD SOUND Array
%()

PLAY SOUND soundno,
channelno, type [,frequency]
[,volume]

muss ein Modpuffer nicht mit dem Befehl OPTION aktiviert werden.

Spielt ein bestimmtes Sample in der Mod-Datei auf dem angegebenen Kanal
ab. Die Lautstärke ist optional und kann zwischen 0 und 64 liegen. Dieser
Befehl kann nur verwendet werden, wenn bereits eine Mod-Datei abgespielt
wird, und ermöglicht die Ausgabe von Soundeffekten, während die
Hintergrundmusik noch läuft.

Lädt ein Array mit 1024 Elementen, das aus 4096 16-Bit-Werten zwischen 0
und 4095 besteht. Dies liefert die Daten für jede beliebige Wellenform, die mit
dem Befehl PLAY SOUND abgespielt werden kann. Mit dem Befehl
MEMORY PACK kannst du die Arrays aus einem normalen Integer-Array mit
4096 Elementen erstellen.

Spielt eine Reihe von Sounds gleichzeitig auf dem Audioausgang ab.

„soundno” ist die Soundnummer und kann zwischen 1 und 4 liegen, sodass vier
Sounds gleichzeitig auf jedem Kanal abgespielt werden können.

„channelno” gibt den Ausgangskanal an. Er kann L (linker Lautsprecher), R
(rechter Lautsprecher) oder B (beide Lautsprecher) sein.

 „type” gibt die zu verwendende Wellenform an. Sie kann S (Sinuswelle), Q
(Rechteckwelle), T (Dreieckwelle), W (Sägezahnwelle), O (Null-Ausgabe), P
(periodisches Rauschen), N (zufälliges Rauschen) oder U (benutzerdefiniert
mit PLAY LOAD SOUND) sein.

„frequency“ ist die Frequenz von 1 bis 20000 (Hz) und muss angegeben
werden, außer wenn „type“ O ist. Im Modus „Type U“ kann dieser Parameter
auch Dezimalwerte annehmen. Zum Beispiel werden alle folgenden Beispiele
die Wellenform in ihrer ursprünglichen Tonhöhe wiedergeben:

Abtastrate von 4000, Frequenz = 1
Abtastrate von 8000, Frequenz = 2
Abtastrate von 16000, Frequenz = 4

„Lautstärke“ ist optional und muss zwischen 1 und 25 liegen. Der
Standardwert ist 25.

Wenn PLAY SOUND aufgerufen wird, werden alle anderen Audiofunktionen
blockiert und bleiben blockiert, bis PLAY STOP aufgerufen wird. Die
Ausgabe kann mit PLAY PAUSE und PLAY RESUME vorübergehend
angehalten werden.

Wenn du SOUND bei einem schon laufenden „soundno” aufrufst, wird die
vorherige Ausgabe sofort ersetzt. Einzelne Sounds kannst du mit dem Typ „O”
ausschalten.

Wenn 4 Sounds gleichzeitig auf beiden Kanälen der Audioausgabe laufen,
verbraucht das etwa 23 % der CPU.

PLAY PAUSE

PLAY RESUME

PLAY STOP

PLAY PAUSE hält die aktuell abgespielte Datei oder den Ton vorübergehend
an.

PLAY RESUME setzt die Wiedergabe eines angehaltenen Sounds fort.

PLAY STOP beendet die Wiedergabe der Datei oder des Tons. Wenn das
Programm aus irgendeinem Grund beendet wird, wird auch die Tonausgabe
automatisch gestoppt.

PLAY VOLUME links, rechts

PLAY NEXT

Passt die Lautstärke der Audioausgabe an.

„links” und „rechts” sind die Pegel für den linken und rechten Kanal und
können zwischen 0 und 100 liegen, wobei 100 die maximale Lautstärke ist. Es
gibt eine lineare Beziehung zwischen dem eingestellten Pegel und der
Ausgabe. Die Lautstärke ist standardmäßig auf Maximum eingestellt, wenn ein
Programm gestartet wird.

Seite184 PicoMite-Benutzerhandbuch

VORHERIGE
WIEDERGABE

Stoppt die Wiedergabe der aktuellen Audiodatei und startet die nächste im
Verzeichnis

Stoppt die Wiedergabe der aktuellen Audiodatei und startet die vorherige im
Verzeichnis.

MP3-Datei abspielen$ [,
Unterbrechung]

PLAY HALT

PLAY CONTINUE track$

MIDIFILE-Datei abspielen$ [,
Unterbrechung]

MIDI abspielen

MIDI-Befehl cmd%,
Daten1%, Daten2% abspielen

MIDI TEST abspielen n

SPIELE NOTE EIN Kanal%,
Note%, Anschlagstärke%

SPIELE NOTE AUS Kanal%,
Note% [, Anschlagstärke%]

STREAM ABSPIELEN buffer
%(), readpointer%,
writepointer%

SPEZIELLE VS1053-WIEDERGABE-BEFEHLE

Spielt eine MP3-Datei über den Soundausgang ab.
„file$” ist die abzuspielende MP3-Datei (die Erweiterung .mp3 wird
angehängt, falls sie fehlt). Die Abtastrate sollte 44100 Hz Stereo sein.
Die MP3-Datei wird im Hintergrund abgespielt. „interrupt” ist optional und ist
der Name einer Subroutine, die aufgerufen wird, wenn die Datei fertig
abgespielt ist.
Wenn file$ ein Verzeichnis auf dem Laufwerk B: ist, spielt der Pico alle
Dateien in diesem Verzeichnis nacheinander ab.

Dieser Befehl funktioniert, wenn eine MP3-Datei abgespielt wird. Er stoppt die
Wiedergabe und speichert die aktuelle Dateiposition, damit die Wiedergabe an
derselben Stelle fortgesetzt werden kann. Dieser Befehl wurde speziell für die
Unterstützung von MP3-Hörbüchern entwickelt.

Setzt die Wiedergabe des angegebenen MP3-Titels fort. „track$“ ist der Name
der Datei, die bei der Unterbrechung abgespielt wurde, wobei alle
Dateiattribute entfernt wurden.
z. B.
PLAY MP3 „B:/mp3/mymp3.mp3”
 etwas später
PLAY HALT
 später nochmal
PLAY CONTINUE „mymp3”

Spielt eine MIDI-Datei über den Soundausgang ab.
„file$” ist die MIDI-Datei, die abgespielt werden soll (die Erweiterung .mid
wird angehängt, falls sie fehlt).
Die MIDI-Datei wird im Hintergrund abgespielt. „interrupt” ist optional und ist
der Name einer Subroutine, die aufgerufen wird, wenn die Datei fertig
abgespielt ist.
Wenn file$ ein Verzeichnis auf Laufwerk B: ist, spielt der Pico alle Dateien in
diesem Verzeichnis nacheinander ab.

Startet den Echtzeit-MIDI-Modus. In diesem Modus kannst du MIDI-Befehle
an den VS1053 senden, um auszuwählen, welche Instrumente auf welchen
Kanälen gespielt werden sollen, Noten einzuschalten und sie in Echtzeit
auszuschalten.

Sendet einen MIDI-Befehl im Echtzeit-MIDI-Modus. Ein Beispiel wäre die
Zuweisung eines Instruments zu einem Kanal. Z. B.
PLAY MIDI CMD &B11000001,4 „Kanal 1 auf Instrument 4 einstellen“.

Spielt eine MIDI-Testsequenz ab, n=0 bis 3, 0 = normale Echtzeit, die anderen
spielen Noten- und Instrumentensamples ab.

Schaltet die Note auf dem angegebenen Kanal ein, wenn du im Echtzeit-MIDI-
Modus bist.

Schaltet die Note auf dem angegebenen Kanal im Echtzeit-MIDI-Modus aus.

PicoMite Benutzerhandbuch Seite 185

Sendet Daten aus dem Ringpuffer „buffer%” an den VS1053-CODEC. Dieser
Befehl startet einen Hintergrund-Ausgabestrom, bei dem alles, was sich im
Puffer zwischen dem Lesepfeil und dem Schreibpfeil befindet, an den VS1053
gesendet wird, wobei der Lesepfeil fortlaufend aktualisiert wird. Kann für die
Ausgabe beliebiger Wellenformen verwendet werden.

POKE BYTE addr%, byte

oder
POKE SHORT addr%, short%

oder
POKE WORD addr%, word%

oder
POKE INTEGER addr%, int%

oder
POKE FLOAT addr%, float!

oder
POKE VAR var, offset, byte
oder
POKE VARTBL, offset, byte

POKE DISPLAY Befehl
[,Daten1] [,Daten2] [,Daten3]

POKE DISPLAY HRES n
POKE DISPLAY VRES n

Setzt ein Byte oder ein Wort im Speicherbereich des Pico. Wenn mehr als ein
Byte geschrieben wird, muss die Adresse genau durch die Anzahl der Bytes
teilbar sein: 2, 4 oder 8, sonst wird ein Fehler gemeldet.

POKE BYTE setzt das Byte (d. h. 8 Bit) an der Speicherstelle „addr%” auf
„byte”. „addr%” sollte eine ganze Zahl sein.

POKE SHORT setzt die kurze Ganzzahl (d. h. 16 Bit) an der Speicherstelle

„addr%” auf „word%”. „addr%” und „short%” sollten ganze Zahlen sein.

POKE WORD setzt das Wort (also 32 Bit) an der Speicherstelle 'addr%' auf
'word%'. 'addr%' und 'word%' sollten ganze Zahlen sein.

POKE INTEGER setzt die MMBasic-Ganzzahl (also 64 Bit) an der
Speicherstelle 'addr%' auf 'int%'. 'addr%' und 'int%' sollten Ganzzahlen sein.

POKE FLOAT setzt das Wort (also 64 Bit) an der Speicherstelle 'addr%' auf
'float!'. 'addr%' sollte eine ganze Zahl und 'float!' eine Gleitkommazahl sein.

POKE VAR setzt ein Byte an der Speicheradresse von 'var'. 'offset' ist der
±Offset von der Adresse der Variablen. Ein Array wird als var() angegeben.
POKE VARTBL setzt ein Byte in der Variablentabelle von MMBasic. „offset”
ist der ±Offset vom Anfang der Variablentabelle. Beachte, dass nach dem
Schlüsselwort VARTBL ein Komma erforderlich ist.

Dieser Befehl sendet Befehle und zugehörige Daten an den Display-Controller
für ein angeschlossenes Display. Damit kann der Programmierer Parameter für
die Konfiguration des Displays ändern. Beispielsweise schaltet POKE
DISPLAY &H28 ein SSD1963-Display aus und POKE DISPLAY &H29
schaltet es wieder ein.

Funktioniert für alle Displays außer dem ST7790.

Diese Befehle ändern den gespeicherten Wert von MM.HRES und MM.VRES,
sodass der Programmierer nicht standardmäßige Displays konfigurieren kann.

POLYGON n, xarray%(),
yarray%() [, bordercolour] [,
fillcolour]

POLYGON n(), xarray%(),
yarray%() [, bordercolour()] [,
fillcolour()]

POLYGON n(), xarray%(),
yarray%() [, bordercolour] [,
fillcolour]

Zeichnet ein gefülltes oder umrandetes Polygon mit „n” xy-Koordinatenpaaren
in „xarray%()” und „yarray%()”. Wenn „fillcolour” weggelassen wird, wird
nur die Polygonumrandung gezeichnet. Wenn „bordercolour” weggelassen
wird, wird standardmäßig die aktuelle Vordergrundfarbe verwendet.

Wenn das letzte xy-Koordinatenpaar nicht mit dem ersten übereinstimmt,
erstellt die Firmware automatisch ein zusätzliches xy-Koordinatenpaar, um das
Polygon zu vervollständigen. Die Größe der Arrays sollte mindestens so groß
sein wie die Anzahl der x,y-Koordinatenpaare.

„n” kann ein Array sein, und die Farben können optional auch Arrays sein, wie
folgt:

POLYGON n(), xarray%(), yarray%() [, bordercolour()] [, fillcolour()]

POLYGON n(), xarray%(), yarray%() [, bordercolour] [, fillcolour]

Die Elemente von „array n()“ sagen, wie viele xy-Koordinatenpaare in jedem
der Polygone sind. Zum Beispiel würde DIM n(1)=(3,3) bedeuten, dass zwei
Polygone mit jeweils drei Eckpunkten gezeichnet werden sollen. Die Größe
des n-Arrays entscheidet, wie viele Polygone gezeichnet werden, es sei denn,
es gibt ein Element mit dem Wert Null. In diesem Fall verarbeitet die
Firmware nur die Polygone bis zu diesem Punkt. Die x-, y-Koordinatenpaare
für alle Polygone werden in „xarray%()“ und „yarray%()“ gespeichert. Die

Seite186 PicoMite-Benutzerhandbuch

Parameter „xarray%()“ und „yarray%()“ müssen mindestens so viele Elemente
haben wie die Summe der Werte im Array n.

Jedes Polygon kann geschlossen werden, wenn das erste und das letzte
Element gleich sind. Ist das letzte Element nicht gleich dem ersten, erstellt die
Firmware automatisch ein zusätzliches x,y-Koordinatenpaar, um das Polygon
zu vervollständigen. Wird die Füllfarbe weggelassen, werden nur die
Polygonkonturen gezeichnet.

Die Farbparameter können ein einzelner Wert sein, in diesem Fall werden alle
Polygone in derselben Farbe gezeichnet, oder sie können Arrays mit derselben
Kardinalität wie „n“ sein. In diesem Fall kann jedes gezeichnete Polygon eine
andere Farbe sowohl für den Rand als auch für die Füllung haben.

Beispielsweise werden hier drei Dreiecke in Gelb, Grün und Rot gezeichnet:
DIM c%(2)=(3,3,3)
DIM x%(8)=(100,50,150,100,50,150,100,50,150)
DIM y%(8)=(50,100,100,150,200,200,250,300,300)
DIM fc%(2)=(rgb(gelb),rgb(grün),rgb(rot))
POLYGON c%(),x%(),y%(),fc%(),fc%()

PORT(start, nbr [,start, nbr]…)
= Wert

Legt mehrere I/O-Pins gleichzeitig fest (also mit einem Befehl).

„start” ist eine I/O-Pin-Nummer, und das niedrigste Bit in „value” (Bit 0) wird
zum Einstellen dieses Pins verwendet. Bit 1 wird zum Einstellen des Pins
„start” plus 1 verwendet, Bit 2 zum Einstellen des Pins „start”+2 und so weiter
für die Anzahl der Bits „nbr”. Die verwendeten I/O-Pins müssen fortlaufend
nummeriert sein, und jeder I/O-Pin, der ungültig oder nicht als Ausgang
konfiguriert ist, führt zu einem Fehler. Das Start/nbr-Paar kann wiederholt
werden, wenn eine zusätzliche Gruppe von Ausgangspins hinzugefügt werden
muss.

Zum Beispiel: PORT(15, 4, 23, 4) = &B10000011
Setzt acht I/O-Pins. Die Pins 15 und 16 werden auf High gesetzt, während 17,
18, 23, 24 und 25 auf Low gesetzt werden und schließlich 26 auf High gesetzt
wird.

Dieser Befehl kann verwendet werden, um bequem mit parallelen Geräten wie
LCD-Displays zu kommunizieren. Es kann eine beliebige Anzahl von I/O-Pins
(und damit Bits) von 1 bis zur Anzahl der I/O-Pins auf dem Chip verwendet
werden.

Hinweis: Wenn die Pins mit der GPn-Syntax definiert werden, ignoriert die
Firmware ungültige Pins, also PORT(GP0, 8) = &B10000011 Setzt acht
I/O-Pins. Die Pins GP0, GP1 und GP7 werden auf High gesetzt, während GP2,
GP3, GP4, GP5 und GP6 auf Low gesetzt werden.

Siehe die Funktion PORT, um gleichzeitig von mehreren Pins zu lesen.

PRINT Ausdruck
[[,;]Ausdruck] … usw.

Gibt Text an die serielle Konsole aus, gefolgt von einem
Zeilenumbruch/Zeilenvorschub-Paar. Es können mehrere Ausdrücke
verwendet werden, die durch eines der folgenden Zeichen getrennt werden
müssen:

 Komma (,) getrennt werden, wodurch das Tabulatorzeichen ausgegeben
wird

 Semikolon (;), das nichts ausgibt (es wird nur zum Trennen von
Ausdrücken verwendet).

 Nichts oder ein Leerzeichen, das wie ein Semikolon wirkt.

Ein Semikolon (;) oder ein Komma (,) am Ende der Ausdrucksliste unterdrückt
die Ausgabe des Zeilenumbruch-/Zeilenvorschub-Paares am Ende einer
Druckanweisung.

Beim Drucken wird einer positiven Zahl ein Leerzeichen vorangestellt, einer
negativen Zahl ein Minuszeichen (-), aber es folgt kein Leerzeichen.
Ganzzahlen werden ohne Dezimalpunkt gedruckt, während Brüche mit

PicoMite Benutzerhandbuch Seite 187

Dezimalpunkt und den signifikanten Dezimalstellen gedruckt werden. Große
oder kleine Gleitkommazahlen werden automatisch im wissenschaftlichen
Zahlenformat gedruckt.

Mit der Funktion TAB() kann ein Abstand zu einer bestimmten Spalte
eingefügt werden, und mit der Funktion STR$() können Zeichenfolgen
ausgerichtet oder anderweitig formatiert werden.

PRINT #nbr, Ausdruck
[[,;]Ausdruck] … usw.

Wie oben, nur dass die Ausgabe an einen seriellen Kommunikationsport oder
eine Datei geleitet wird, die für OUTPUT oder APPEND mit der Dateinummer
„nbr” geöffnet ist. Sieh dir den Befehl OPEN an.

PRINT #GPS, Ausdruck
[[,;]Ausdruck] … usw.

Schreibt eine NMEA-Zeichenkette an ein geöffnetes GPS-Gerät. Die
Zeichenkette muss mit einem $-Zeichen beginnen und mit einem *-Zeichen
enden. Die Prüfsumme wird automatisch berechnet und zusammen mit den
CR/LF-Zeichen an die Zeichenkette angehängt.

PRINT @(x [, y]) Ausdruck

oder

PRINT @(x, [y], m) Ausdruck

Funktioniert auf der Terminal-Konsole eines angeschlossenen Computers oder
auf einem VGA/HDMI-Bildschirm oder dem Display, wenn OPTION
LCDPANEL CONSOLE aktiviert ist.

Funktioniert wie der Standardbefehl PRINT, außer dass der Cursor an den
Koordinaten x, y positioniert wird, die in Pixeln angegeben sind. Wenn y
weggelassen wird, wird der Cursor an „x” in der aktuellen Zeile positioniert.

Beispiel: PRINT @(150, 45) „Hallo Welt“

Die @-Funktion kann überall in einem Druckbefehl verwendet werden.

Beispiel: PRINT @(150, 45) „Hallo“ @(150, 55) „Welt“

Mit der Funktion @(x,y) kannst du den Cursor an einer beliebigen Stelle auf
oder außerhalb des Bildschirms positionieren. Wenn du zum Beispiel PRINT
@(-10, 0) "Hallo" eingibst, wird nur „allo“ angezeigt, weil die ersten beiden
Zeichen außerhalb des Bildschirms liegen und nicht angezeigt werden können.

Die Funktion @(x,y) verhindert automatisch den Zeilenumbruch, der
normalerweise passiert, wenn der Cursor über den rechten Bildschirmrand
hinausgeht.

Wenn „m” angegeben ist, läuft der Videomodus so ab:
m = 0 Normaler Text (weiße Buchstaben, schwarzer Hintergrund)
m = 1 Der Hintergrund wird nicht gezeichnet (d. h. transparent)
m = 2 Das Video wird umgekehrt (schwarze Buchstaben, weißer
Hintergrund)
m = 5 Die aktuellen Pixel werden umgekehrt (transparenter Hintergrund).

PULSE-Pin, Breite Erzeugt einen Impuls am „Pin” mit einer Dauer von „Breite” ms. „Breite” kann
ein Bruchteil sein. Zum Beispiel entspricht 0,01 10 µs, was die Erzeugung sehr
schmaler Impulse ermöglicht.

Der erzeugte Impuls hat die entgegengesetzte Polarität zum Zustand des I/O-
Pins, wenn der Befehl ausgeführt wird. Wenn der Ausgang beispielsweise auf
„high” gesetzt ist, erzeugt der Befehl PULSE einen negativen Impuls.

Hinweise:

 „Pin“ muss als Ausgang konfiguriert sein.

 Bei einem Impuls von weniger als 3 ms beträgt die Genauigkeit ± 1 µs.

 Bei einem Impuls von 3 ms oder mehr beträgt die Genauigkeit ± 0,5 ms.

 Ein Impuls von 3 ms oder mehr läuft im Hintergrund. Bis zu fünf
verschiedene und gleichzeitige Impulse können im Hintergrund laufen, und
jeder kann durch einen neuen PULSE-Befehl zeitlich geändert oder durch
einen PULSE-Befehl mit Null für „width” beendet werden.

PWM-Kanal, Frequenz, Es stehen 8 separate PWM-Frequenzen (Kanäle 0 bis 7) und bis zu 16

Seite188 PicoMite-Benutzerhandbuch

[dutyA] [,dutyB][,phase]
[,defer]

PWM SYNC s0 [,s1][,s2][,s3]
[,s4][,s5][,s6][,s7]

PWM-Kanal, AUS

Ausgänge mit individuell gesteuerter Einschaltdauer zur Verfügung. Du kannst
für jeden Kanal entweder PWMnA oder PWMnB oder beides ausgeben – ohne
Einschränkung. Die Einschaltdauer wird als Prozentsatz angegeben, und du
kannst einen negativen Wert verwenden, um die Ausgabe umzukehren (-100,0
<= duty <=100,0).

Um nur Kanal B zu verwenden, benutze die Syntax: „PWM-Kanal, Frequenz, ,
dutyB“ – beachte das doppelte Komma vor dem gewünschten Tastverhältnis.

Minimale Frequenz = (cpuspeed + 1) / (2^24) Hz. Die maximale
Geschwindigkeit ist OPTION CPUSPEED/4. Bei sehr hohen
Geschwindigkeiten werden die Arbeitszyklen zunehmend eingeschränkt.

Phase ist ein Parameter, der bewirkt, dass die Wellenformen so zentriert
werden, dass eine Wellenform mit einem kürzeren Arbeitszyklus zur gleichen
Zeit beginnt und endet wie eine längere. Verwende 1, um diesen Modus zu
aktivieren, und 0 (oder lass ihn weg), um normal zu laufen.

Wenn der Parameter „deferredstart” auf 1 gesetzt ist, werden die PWM-Kanäle
konfiguriert, aber die Ausgabe wird nicht gestartet. Sie können dann mit dem
Befehl PWM SYNC gestartet werden. Dies kann verwendet werden, um
unerwünschte Startartefakte zu vermeiden.

Der PWM-Befehl kann auch Servos wie folgt ansteuern:
 PWM 1,50,(Position_als_Prozentwert * 0,05 + 5)

Dies initiiert die PWM auf Kanälen, für die ein verzögerter Start definiert
wurde, oder synchronisiert einfach bereits laufende Kanäle. Die Stärke liegt
jedoch in der Möglichkeit, die Kanäle gegeneinander zu versetzen (definiert als
Prozentsatz der Zeitdauer gemäß dem Arbeitszyklus – kann ein Float sein).

Du kannst einen Versatz von -1 verwenden, um einen Kanal aus der
Synchronisation auszuschließen.

Stopp der Ausgabe auf „Kanal”.

PicoMite Benutzerhandbuch Seite 189

RAM

RAM-LISTE

RAM-LISTE n [,alle]

RAM-LÖSCHEN n

RAM-LÖSCHUNG ALL

RAM SPEICHERN n

RAM-LADEN n

RAM-LAUF n

RAM-Kette n

RAM ÜBERSCHREIBEN n

RAM-DATEI LADEN n,
fname$
[,O[ÜBERSCHREIBEN]]

RP2350 nur mit aktiviertem PSRAM
Der RAM-Befehl ermöglicht den Zugriff auf bis zu 5 RAM-Programmslots
(ähnlich wie Flash-Slots). RAM-Slots bleiben nach einem Hardware- und
Software-Reset erhalten, aber nicht nach einem Neustart.

Zeigt eine Liste aller RAM-Speicherplätze einschließlich der ersten Zeile des
Programms an.

Listet das auf Speicherplatz n gespeicherte Programm auf. Mit ALL wird ohne
Seitenumbrüche aufgelistet.

Löscht einen RAM-Programmspeicherplatz.

Löscht alle RAM-Programmspeicherplätze.

Speicher das aktuelle Programm an dem angegebenen RAM-Speicherplatz.

Lade ein Programm vom angegebenen RAM-Speicherplatz in den
Programmspeicher.

Startet das Programm an Speicherplatz n, löscht alle Variablen. Ändert nichts
am
Programmspeicher.

Führt das Programm an Speicherplatz n aus und lässt alle Variablen so, wie sie
sind (damit kann das
Programm, das viel größer ist als der Programmspeicher). Ändert den
Programmspeicher. Hinweis: Wenn das verkettete Programm den Befehl
READ verwendet, muss es vor dem ersten Lesevorgang den Befehl RESTORE
aufrufen.

Löscht einen RAM-Programmspeicherplatz und speichert dann das aktuelle
Programm an der angegebenen RAM-Position
gespeichert.

Lädt die MMBasic-Datei fname$ in den angegebenen RAM-Speicherplatz.
Wenn der optionale Parameter OVERWRITE (oder O) angegeben ist, wird der
Inhalt des
Flash-Speicherplatz ohne Fehlermeldung überschrieben.

RANDOMIZE nbr Setzt den Zufallszahlengenerator mit „nbr” zurück.

Auf dem RP2040 wird der Zufallszahlengenerator beim Einschalten mit Null
initialisiert und erzeugt jedes Mal die gleiche Folge von Zufallszahlen. Um
jedes Mal eine andere Zufallsfolge zu erzeugen, musst du einen anderen Wert
für „nbr” verwenden (die TIMER-Funktion ist dafür praktisch).

Dieser Befehl hat keine Wirkung auf dem RP2350, der über einen Hardware-
Zufallsgenerator verfügt, der keine Initialisierung erfordert.

RBOX x, y, w, h [, r] [,c]
[,fill]

Zeichnet ein Rechteck mit abgerundeten Ecken auf dem Videoausgang oder
dem angeschlossenen LCD-Bildschirm, beginnend bei „x” und „y”, das „w”
Pixel breit und „h” Pixel hoch ist.

„r” ist der Radius der Ecken des Kastens. Der Standardwert ist 10.

„c” gibt die Farbe an und ist standardmäßig die Standard-Vordergrundfarbe,
wenn nichts anderes angegeben ist. „fill” ist die Füllfarbe. Sie kann
weggelassen oder auf -1 gesetzt werden, dann wird das Feld nicht gefüllt.

Alle Parameter können als Arrays angegeben werden, und die Software
zeichnet die Anzahl der Kästchen, die durch die Abmessungen des kleinsten
Arrays bestimmt wird. „x”, „y”, „w” und „h” müssen alle Arrays oder alle

Seite190 PicoMite-Benutzerhandbuch

einzelne Variablen/Konstanten sein, sonst kommt es zu einem Fehler „ ”. „r”,
„c” und „fill” können entweder Arrays oder einzelne Variablen/Konstanten
sein.

Eine Definition der Farben und Grafikkoordinaten findest du im Kapitel
„Grafikbefehle und -funktionen”.

REDIM [PRESERVE]
array1(dimensions) [,
array2(dimensions]…
[,arrayn(dimensions]

Damit änderst du die Größe der angegebenen Arrays mit den angegebenen
Dimensionen.
Wenn der optionale Unterbefehl PRESERVE angegeben wird, werden die
vorhandenen Daten in das neue Array kopiert.
Das neue Array kann größer oder kleiner als das Original sein.
Bei Zeichenfolgen-Arrays bleibt die ursprünglich angegebene LÄNGE
erhalten.
Beachte, dass bei mehrdimensionalen Arrays nur die letzte Dimension geändert
werden kann, wenn PRESERVE verwendet wird.

Bei Verwendung von PRESERVE muss genügend Speicherplatz vorhanden
sein, damit sowohl das ursprüngliche Array als auch seine geänderte Version
gleichzeitig existieren können. Der dem ursprünglichen Array zugewiesene
Speicher wird beim Beenden des Befehls freigegeben.

READ variable[, variable].. Liest Werte aus DATA-Anweisungen und weist diese Werte den genannten
Variablen zu. Die Variablentypen in einer READ-Anweisung müssen mit den
Datentypen in den DATA-Anweisungen übereinstimmen, wenn sie gelesen
werden.

Arrays können als Variablen verwendet werden (angegeben mit leeren
Klammern, z. B. a()) und in diesem Fall wird die Größe des Arrays verwendet,
um zu bestimmen, wie viele Elemente gelesen werden sollen. Wenn das Array
mehrdimensional ist, wird die Dimension ganz links am schnellsten
verschoben.

Siehe auch DATA und RESTORE.

READ SAVE

oder

READ RESTORE

READ SAVE speichert den virtuellen Zeiger, den der Befehl READ benutzt,
um auf die nächsten zu lesenden DATA zu zeigen. READ RESTORE stellt den
vorher gespeicherten Zeiger wieder her.

Dadurch können Unterprogramme Daten lesen und anschließend den
Lesepointer wiederherstellen, um andere Teile des Programms, die
möglicherweise dieselben Datenanweisungen lesen, nicht zu stören. Diese
Befehle können verschachtelt werden.

REFRESH Startet eine Aktualisierung des Bildschirms für E-Ink-Schwarzweiß-Displays.

Diese können nur bildschirmweise aktualisiert werden. Wenn OPTION
AUTOREFRESH auf OFF steht, kann dieser Befehl zum Auslösen des
Schreibvorgangs verwendet werden.

Dieser Befehl funktioniert mit den folgenden Displays: N5110, SSD1306I2C,
SSD1306I2C32, SSD1306SPI, ST7920.

REM-Zeichenfolge REM ermöglicht das Einfügen von Anmerkungen in ein Programm.

Beachte, dass die Verwendung von einfachen Anführungszeichen (‘) im
Microsoft-Stil zur Kennzeichnung von Anmerkungen auch unterstützt wird
und bevorzugt ist.

RENAME old$ AS new$ Benenne eine Datei oder ein Verzeichnis von „old$” in „new$” um. Beide sind
Zeichenfolgen.

Sowohl in „old$” als auch in „new$” kann ein Verzeichnispfad verwendet
werden. Wenn die Pfade unterschiedlich sind, wird die in „old$” angegebene
Datei mit dem angegebenen Dateinamen in den in „new$” angegebenen Pfad
verschoben.

PicoMite Benutzerhandbuch Seite 191

RESTORE [Zeile] Setzt die Zeilen- und Positionszähler für die READ-Anweisung zurück.

Wenn „Zeile” angegeben ist, werden die Zähler auf den Anfang der
angegebenen Zeile zurückgesetzt. „Zeile” kann eine Zeilennummer, eine
Bezeichnung oder eine Variable mit diesen Werten sein.

Wenn „Zeile” nicht angegeben ist, werden die Zähler auf den Anfang des
Programms zurückgesetzt.

RMDIR dir Entfernt oder löscht das Verzeichnis „dir$“ auf dem Standard-Flash-
Dateisystem oder der SD-Karte.

RTC GETTIME

RTC SETTIME Jahr, Monat,
Tag, Stunde, Minute, Sekunde

RTC SETREG reg, Wert

RTC GETREG reg, var

RTC GETTIME ruft das aktuelle Datum/die aktuelle Uhrzeit von einer
Echtzeituhr vom Typ PCF8563, DS1307, DS3231 oder RV3028 ab und stellt
die interne MMBasic-Uhr ein. Das Datum/die Uhrzeit kann dann mit den
Funktionen DATE$ und TIME$ abgerufen werden.

RTC SETTIME stellt die Zeit im Uhrenchip ein. „hour” muss im 24-Stunden-
Format angegeben werden. „Jahr” kann zwei- oder vierstellig sein. Der Befehl
RTC SETTIME akzeptiert auch ein einzelnes String-Argument im Format
TT/MM/JJ HH:MM. Das heißt, das Datum/die Uhrzeit kann vom Benutzer
über eine GUI-FORMATBOX mit dem Format DATETIME2 eingegeben
werden (siehe Advanced Graphics Functions.pdf).

Die Befehle RTC SETREG und GETREG können zum Einstellen oder
Auslesen des Inhalts von Registern im Echtzeituhr-Chip verwendet werden.
„reg“ ist die Nummer des Registers, „value“ ist die im Register zu speichernde
Zahl und „var“ ist eine Variable, die die aus dem Register gelesene Zahl
empfängt. Diese Befehle sind für den normalen Betrieb nicht erforderlich,
können aber zur Steuerung spezieller Funktionen des Chips (Alarme,
Ausgangssignale usw.) verwendet werden. Sie sind auch nützlich, um
temporäre Informationen im batteriegepufferten RAM des Chips zu speichern.

Diese Chips sind I2C-Geräte und müssen mit den beiden I2C-Pins verbunden
werden, wie in OPTION SYSTEM I2C angegeben, mit entsprechenden Pullup-
Widerständen.

Siehe auch den Befehl OPTION RTC AUTO ENABLE.

RUN

oder

RUN [Datei$] [,
Befehlszeile$]

Ein Programm ausführen.

Wenn „file$” nicht angegeben ist, wird das Programm ausgeführt, das gerade
im Programmspeicher ist.

Wenn „file$“ angegeben ist, wird die genannte Datei aus dem Flash- oder SD-
Karten-Dateisystem ausgeführt. Wenn „file$“ keine Erweiterung „.BAS“
enthält, wird diese automatisch hinzugefügt.

Wenn „cmdline$“ angegeben ist, wird sein Wert beim Ausführen des
Programms an die Konstante MM.CMDLINE$ übergeben. Wenn „cmdline$“
nicht angegeben ist, wird ein leerer Stringwert an MM.CMDLINE$ übergeben.
Hinweise:

• Sowohl „file$“ als auch „cmdline$“ können als Zeichenfolgenausdrücke
angegeben werden.

• Mit FLASH RUN n kannst du ein Programm ausführen, das in einem Flash-
Slot gespeichert ist.

SAVE file$ Speichert das Programm im aktuellen Arbeitsverzeichnis des Flash-
Dateisystems oder der SD-Karte als „file$”. Beispiel: SAVE „TEST.BAS”

Wenn keine Erweiterung angegeben wird, wird „.BAS” an den Dateinamen
angehängt.

Siehe auch FLASH SAVE n zum Speichern in einem Flash-Slot.

Seite192 PicoMite-Benutzerhandbuch

SAVE CONTEXT [CLEAR] Speichert den Variablenbereich und löscht ihn optional – der Befehl sollte im
Top-Level-Programm und nicht innerhalb einer Subroutine verwendet werden.
Dadurch wird der gesamte Variablenbereich auf dem Laufwerk A: gespeichert.
Der Befehl schlägt fehl, wenn auf dem Laufwerk A: nicht genügend freier
Speicherplatz vorhanden ist. Bei einem RP2350 mit PSRAM wird der
Variablenbereich in einem reservierten Bereich im PSRAM gespeichert und
das Laufwerk A: wird nicht verwendet.

Siehe auch LOAD CONTEXT

SAVE IMAGE file$ [,x, y, w,
h]

oder

SPEICHERE
KOMPRIMIERTES BILD
file$ [,x, y, w, h]

Speichert das aktuelle Bild auf dem Videoausgang oder dem LCD-Bildschirm
als BMP-Datei. Der LCD-Bildschirm muss lesbar sein, zum Beispiel ein
Bildschirm auf ILI9341-Basis oder ein VIRTUAL_M- oder VIRTUAL_C-
Bildschirm.

„file$” ist der Name der Datei. Wenn keine Erweiterung angegeben wird, wird
„.BMP” an den Dateinamen angehängt. Das Bild wird als Echtfarben-24-Bit-
Bild gespeichert.

„x”, „y”, „w” und „h” sind optional und stehen für die Koordinaten („x” und
„y” sind die Koordinaten oben links) und Abmessungen (Breite und Höhe) des
zu speichernden Bereichs. Wenn nichts angegeben wird, wird der ganze
Bildschirm gespeichert. Beachte, dass „width”, wenn es benutzt wird, ein
Vielfaches von 2 sein muss.

SAVE COMPRESSED IMAGE funktioniert genauso, nur dass die Dateigröße
durch RLE-Komprimierung reduziert wird.

SAVE PERSISTENT n% Speichert den Wert n% an einem speziellen Speicherort, der einen Watchdog-
Reset oder einen physischen Reset übersteht, aber nicht einen Neustart.

Siehe auch MM.PERSISTENT oder MM.INFO(PERSISTENT)

SEEK [#]fnbr, pos Positioniert den Lese-/Schreibzeiger in einer Datei, die im Flash-Dateisystem
oder auf der SD-Karte geöffnet wurde, für den zufälligen Zugriff auf das Byte
„pos“.

Das erste Byte in einer Datei hat die Nummer eins, also setzt SEEK #5,1 den
Lese-/Schreibzeiger an den Anfang der als #5 geöffneten Datei.

SELECT CASE Wert
 CASE testexp [[, testexp] …]
 <Anweisungen>
 <Anweisungen>
 CASE test-n [[, test-n] …]
 <Anweisungen>
 <Anweisungen>
 CASE ELSE
 <Anweisungen>
 <Anweisungen>
END SELECT

Führt eine von mehreren Anweisungsgruppen aus, je nachdem, was der
Ausdruck ergibt. „value” ist der Ausdruck, der geprüft wird. Das kann eine
Zahl, eine Zeichenfolgenvariable oder ein komplexer Ausdruck sein.

„testexp” (oder test-n) ist der Wert, mit dem verglichen werden soll. Das kann
sein:

 Ein einzelner Ausdruck (z. B. 34, „Zeichenfolge” oder PIN(4)*5), dem er
entsprechen kann

 Ein Wertebereich in Form von zwei einzelnen Ausdrücken, die durch das
Schlüsselwort „TO” getrennt sind (z. B. 5 TO 9 oder „aa” TO „cc”)

 Ein Vergleich, der mit dem Schlüsselwort „IS” beginnt (optional). Zum
Beispiel: IS > 5, IS <= 10.

Wenn mehrere Testausdrücke (durch Kommas getrennt) verwendet werden, ist
die CASE-Anweisung wahr, wenn einer dieser Tests wahr ist.

Wenn „value” nicht mit einem „testexp” übereinstimmt, wird es automatisch mit
CASE ELSE abgeglichen. Wenn CASE ELSE nicht vorhanden ist, führt das
Programm keine <statements> aus und fährt mit dem Code nach END SELECT
fort. Wenn eine Übereinstimmung gefunden wird, werden die <statements>
nach der CASE-Anweisung bis END SELECT oder bis zu einem weiteren
CASE ausgeführt, woraufhin das Programm mit dem Code nach END
SELECT fortfährt.

Es kann eine unbegrenzte Anzahl von CASE-Anweisungen verwendet werden,
aber es darf nur ein CASE ELSE vorhanden sein, und dieses sollte das letzte

PicoMite Benutzerhandbuch Seite 193

vor dem END SELECT sein.

Beispiel:
SELECT CASE nbr%
 CASE 4, 9, 22, 33 TO 88
 statements
 CASE IS < 4, IS > 88, 5 TO 8
 Anweisungen
 CASE SONST
 Anweisungen
END SELECT

Jedes SELECT CASE muss genau eine passende END SELECT-Anweisung
haben. Es können beliebig viele SELECT…CASE-Anweisungen in den
CASE-Anweisungen anderer SELECT…CASE-Anweisungen verschachtelt
werden.

SERVO-Kanal [PositionA]
[,PositionB]

Steuert einen Standard-Servo.

„positionA” und „positionB” können zwischen -20 und 120 liegen und
erzeugen ein 50-Hz-Signal zwischen 800 µs und 2,2 ms.

Wie beim PWM-Befehl müssen die Pins mit SETPIN n,PWM eingerichtet
werden.

Um nur Kanal B zu verwenden, benutze die Syntax: SERVO Kanal,,Position.

Beachte die beiden Kommas, die anzeigen, dass Kanal A nicht eingestellt wird.

Schau dir die Pinbelegung an, um den Kanal und den Unterkanal (A oder B)
für jeden Pin anzugeben.

Beispiele:

90°-Servo: 0 = 0° und 90 = 90°
180°-Servo: 0 = 0° und 90 = 180

Hinweis: Bei Werten < 0 oder > 90 kann der Strom ansteigen, wenn das
Servo seine Endposition erreicht.

360°-Servo: Geschwindigkeit 50 = Stopp, links = L->H:51-100, rechts = L-
>H:49-0.

SETPIN-Pin, cfg [, Option] Konfiguriert einen externen I/O-Pin. Schau dir das Kapitel „Verwendung der
I/O-Pins” an, um eine allgemeine Beschreibung der Ein-/Ausgabefunktionen
des Pico zu bekommen.

„pin” ist der zu konfigurierende I/O-Pin, „cfg” ist der Modus, in den der Pin
versetzt werden soll, und „option” ist ein optionaler Parameter. „cfg” ist ein
Schlüsselwort und kann einer der folgenden Werte sein:

OFF Nicht konfiguriert oder inaktiv

AIN Analogeingang (d. h. Messung der Spannung am Eingang).

ARAW Schneller Analogeingang, der einen Wert zwischen 0 und 4095
zurückgibt.

DIN Digitaler Eingang
Wenn „option” weggelassen wird, ist der Eingang hochohmig.
Wenn „Option” das Schlüsselwort „PULLUP” oder
„PULLDOWN” ist, wird ein konstanter Strom von etwa 50 µA
verwendet, um den Eingangs-Pin auf 3,3 V hoch- oder
herunterzuziehen. Wegen eines Fehlers in den RP2350-Chips
wird empfohlen, einen Pulldown mit einem Widerstand von 8,2
K oder weniger zu machen.

FIN Frequenzeingang
Mit „option” kann die Gate-Zeit (die Zeitdauer, die zum Zählen
der Eingangszyklen verwendet wird) festgelegt werden. Es kann
sich um eine beliebige Zahl zwischen 10 ms und 100000 ms
handeln. Die Funktion PIN() gibt immer die korrekt skalierte
Frequenz in Hz zurück, unabhängig von der verwendeten Gate-

Seite194 PicoMite-Benutzerhandbuch

Zeit. Wenn „option” weggelassen wird, beträgt die Gate-Zeit 1
Sekunde.
Die Pins können GP6, GP7, GP8 oder GP9 sein (kann mit
OPTION COUNT geändert werden).

PIN Periodeneingabe
Mit „option” kann die Anzahl der Eingangszyklen angegeben
werden, über die die Periodenmessung gemittelt werden soll. Es
kann eine beliebige Zahl zwischen 1 und 10000 sein. Die
Funktion PIN() gibt immer die durchschnittliche Periode eines
Zyklus in ms zurück, egal wie viele Zyklen für den Durchschnitt
verwendet wurden. Wenn „option” weggelassen wird, wird die
Periode von nur einem Zyklus verwendet.
Die Pins können GP6, GP7, GP8 oder GP9 sein (kann mit
OPTION COUNT geändert werden).

CIN Zähleingang
Mit „option” kann festgelegt werden, welche Flanke den
Zählvorgang auslöst
und ob Pullup oder Pulldown aktiviert ist.
2 gibt eine fallende Flanke mit Pullup an,
3 sagt, dass sowohl eine fallende als auch eine steigende Flanke
einen
Zählung ohne Pullup auslöst,
5 legt beide Flanken fest, aber mit Pullup.
Wenn „Option” weggelassen wird, löst eine steigende Flanke den
Zählvorgang aus.
Wegen einem Fehler in den RP2350-Chips wird Pull-Down
nicht empfohlen.
Die Pins können GP6, GP7, GP8 oder GP9 sein (kann mit
OPTION COUNT geändert werden).

DOUT Digitaler Ausgang
„option“ wird in diesem Modus nicht benutzt.

Die Funktionen PIN() und PORT() können auch verwendet werden, um den
Wert auf einem oder mehreren Ausgangspins zurückzugeben. Siehe die
Funktion PIN() zum Lesen von Eingängen und die Anweisung PIN()= zum
Einstellen eines Ausgangs. Siehe den folgenden Befehl, wenn ein Interrupt
konfiguriert ist.

SETPIN pin, cfg, target [,
option]

Konfiguriert „pin“ so, dass ein Interrupt gemäß „cfg“ generiert wird. Jeder I/O-
Pin, der für digitale Eingaben geeignet ist, kann so konfiguriert werden, dass er
einen Interrupt generiert, wobei maximal zehn Interrupts gleichzeitig
konfiguriert werden können.

„cfg” ist ein Schlüsselwort und kann eines der folgenden sein:

OFF Nicht konfiguriert oder inaktiv

INTH Interrupt bei Eingang von niedrig auf hoch

INTL Interrupt bei Eingang von hoch nach niedrig

INTB Unterbrechung bei beiden (d. h. bei jeder
Änderung des Eingangs)

„target” ist eine vom Benutzer definierte Subroutine, die aufgerufen wird,
wenn das Ereignis eintritt. Die Rückkehr aus dem Interrupt erfolgt über die
Befehle END SUB oder EXIT SUB. „option” ist dieselbe wie in SETPIN pin
DIN (oben) verwendet.

In diesem Modus wird der Pin auch als digitaler Eingang konfiguriert, sodass
der Wert des Pins immer mit der Funktion PIN() abgerufen werden kann.

Eine allgemeine Beschreibung findest du im Kapitel „Verwendung der E/A-
Pins”.

PicoMite Benutzerhandbuch Seite 195

SETPIN GP25, DOUT |
HEARTBEAT

NICHT IN DER WEBMITE-VERSION

Diese Version von SETPIN steuert die integrierte LED.

Wenn sie als DOUT konfiguriert ist, kann sie per Programm gesteuert ein- und
ausgeschaltet werden.

Wenn es als HEARTBEAT eingestellt ist, blinkt es bei eingeschaltetem Gerät
immer mal wieder 1 Sekunde lang an und 1 Sekunde lang aus. Das ist der
Standardzustand und wird wieder so, wenn das Benutzerprogramm nicht mehr
läuft.

SETPIN p1[, p2 [, p3]], Gerät Diese Befehle werden für die Pin-Zuweisung für spezielle Geräte verwendet.

Die Pins müssen aus dem Pin-Bezeichnungsdiagramm ausgewählt und
zugewiesen werden, bevor die Geräte verwendet werden können. Beachte, dass
die Pins (z. B. rx, tx usw.) in beliebiger Reihenfolge deklariert werden können
und dass die Pins anhand ihrer Pin-Nummer (z. B. 1, 2) oder GP-Nummer (z.
B. GP0, GP1) referenziert werden können.

Beachte, dass bei der WebMite-Version:

 SPI1 und SPI2 bei GP20 bis GP28 nicht verfügbar sind

 COM1 und COM2 sind auf P20 bis GP28 nicht verfügbar

 I2C ist auf Pin 34 (GP28) nicht verfügbar

 Folgende Pins sind nicht verfügbar: GP29, GP25, GP24 und GP23

SETPIN rx, tx, COM1 Weise die Pins zu, die für die serielle Schnittstelle COM1 verwendet werden
sollen.

Gültige Pins sind RX: GP1, GP13 oder GP17

TX: GP0, GP12, GP16 oder GP28

SETPIN rx, tx, COM2 Weis die Pins zu, die für die serielle Schnittstelle COM2 verwendet werden
sollen.

Gültige Pins sind RX: GP5, GP9 oder GP21

TX: GP4, GP8 oder GP20

SETPIN rx, tx, clk, SPI Weis die Pins zu, die für den SPI-Port SPI benutzt werden sollen.

Gültige Pins sind RX: GP0, GP4, GP16 oder GP20

TX: GP3, GP7 oder GP19

CLK: GP2, GP6 oder GP18

SETPIN rx, tx, clk, SPI2 Weis die Pins zu, die für den SPI-Port SPI2 benutzt werden sollen.

Gültige Pins sind RX: GP8, GP12 oder GP28

TX: GP11, GP15 oder GP27

CLK: GP10, GP14 oder GP26

SETPIN sda, scl, I2C Verteil die Pins, die für den I2C-Port I2C benutzt werden sollen.

Gültige Pins sind SDA: GP0, GP4, GP8, GP12, GP16, GP20 oder GP28

SCL: GP1, GP5, GP9, GP13, GP17 oder GP21

SETPIN sda, scl, I2C2 Verteil die Pins, die für den I2C-Port I2C2 benutzt werden sollen.

Gültige Pins sind SDA: GP2, GP6, GP10, GP14, GP18, GP22 oder GP26

SCL: GP3, GP7, GP11, GP15, GP19 oder GP27

Seite196 PicoMite-Benutzerhandbuch

SETPIN-Pin, PWM[nx] Pin zu PWMnx zuweisen

„n” ist die PWM-Nummer (0 bis 7) und „x” ist der Kanal (A oder B). n und x
sind optional.

Der Setpin kann geändert werden, bis der PWM-Befehl gegeben wird. Dann
wird der Pin für PWM gesperrt, bis PWMn,OFF gegeben wird.

SETPIN Pin, IR Verteil die Pins für die Infrarot-Kommunikation (IR) (kann jeder Pin sein).

SETPIN-Pin, PIOn Pin für die Verwendung durch PIO0, PIO1 oder PIO2 reservieren (nur
RP2350) (Details zu PIO findest du in Anhang F).

SETPIN GP1, FFIN [,gate]

NUR RP2350

Stellt GP1 als schnellen Frequenzeingang ein.

Es können Eingänge bis zur CPU-Geschwindigkeit /2 aufgezeichnet werden.

Mit „gate” kann die Gate-Zeit (die Zeitdauer zum Zählen der Eingangszyklen)
festgelegt werden. Diese kann zwischen 10 ms und 100000 ms liegen. Die
Funktion PIN() gibt immer die korrekt skalierte Frequenz in Hz zurück,
unabhängig von der verwendeten Gate-Zeit. Wenn „option” weggelassen wird,
beträgt die Gate-Zeit 1 Sekunde.

Die Funktion nutzt den PWM-Kanal 0 zum Zählen, sodass sie mit keiner
anderen Nutzung dieses PWM-Kanals kompatibel ist.

SETTICK period, target [, nbr] Damit wird ein periodischer Interrupt (oder „Tick“) eingerichtet.

Es stehen vier Tick-Timer zur Verfügung („nbr” ist 1, 2, 3 oder 4). „nbr” ist
optional, und wenn es nicht angegeben wird, wird Timer Nummer 1
verwendet.

Die Zeit zwischen den Interrupts beträgt „period” Millisekunden und „target”
ist die Interrupt-Subroutine, die aufgerufen wird, wenn das zeitgesteuerte
Ereignis eintritt.

Die Periode kann zwischen 1 und 2147483647 ms (etwa 24 Tage) liegen.

Diese Interrupts können deaktiviert werden, indem „period” auf Null gesetzt
wird
(d. h. SETTICK 0, 0, 3 deaktiviert den Tick-Timer Nummer 3).

SETTICK PAUSE, Ziel [,
Anzahl]

oder

SETTICK RESUME, Ziel [,
nbr]

Den angegebenen Timer pausieren oder fortsetzen. Wenn er pausiert ist, wird
der Interrupt verzögert, aber der aktuelle Zählstand bleibt erhalten.

SORT array() [,indexarray()]
[,flags] [,startposition]
[,elementstosort]

Dieser Befehl nimmt ein Array beliebigen Typs (Ganzzahl, Gleitkomma oder
Zeichenfolge) und sortiert es an Ort und Stelle in aufsteigender Reihenfolge.

Er hat einen optionalen Parameter „indexarray%()”. Wenn dieser verwendet
wird, muss es sich um ein Integer-Array handeln, das genauso groß ist wie das
zu sortierende Array. Nach dem Sortieren enthält dieses Array die
ursprüngliche Indexposition jedes Elements im zu sortierenden Array vor dem
Sortieren. Alle Daten im Array werden überschrieben. So können verbundene
Arrays sortiert werden.

Der Parameter „flag” ist optional und gültige Flag-Werte sind:

bit0: 0 (Standard, wenn weggelassen) normale Sortierung – 1 umgekehrte
Sortierung
bit1: 0 (Standard) groß-/kleinschreibungsabhängig – 1 Sortierung ist
groß-/kleinschreibungsunabhängig (nur Zeichenfolgen).
bit2: 0 (Standard) Normale Sortierung – 1 Leere Zeichenfolgen werden an
das Ende des Arrays verschoben

Die optionale „startposition” legt fest, bei welchem Element im Array die

PicoMite Benutzerhandbuch Seite 197

Sortierung beginnen soll. Der Standardwert ist 0 (OPTION BASE 0) oder 1
(OPTION BASE 1).

Der optionale Parameter „elementstosort” sagt, wie viele Elemente im Array
sortiert werden sollen. Standardmäßig sind das alle Elemente nach der
„startposition”.

Jeder der optionalen Parameter kann weggelassen werden. Um beispielsweise
nur die ersten 50 Elemente eines Arrays zu sortieren, könntest du Folgendes
verwenden:

SORT array(), , , ,50

Beispiel:

Das Array city$() könnte die Namen von Städten weltweit enthalten und lässt
sich mit dem folgenden Befehl ganz einfach in aufsteigender alphabetischer
Reihenfolge sortieren: SORT city$()

Der Befehl SORT funktioniert mit Zeichenfolgen, Gleitkommazahlen und
Ganzzahlen, allerdings muss das zu sortierende Array eindimensional sein.

Oft sind Daten in mehreren Arrays gespeichert, zum Beispiel könnte der Name
jeder Stadt im Array city$() gespeichert sein, die Einwohnerzahl im Array pop
%() und die Größe der Stadt im Array area!(). Der gleiche Index würde sich
auf den Namen, die Einwohnerzahl und die Fläche der Stadt beziehen.

Das Sortieren und Zugreifen auf diese Daten ist etwas komplexer, kann aber
relativ einfach mit einem optionalen Parameter für den Befehl sort wie folgt
durchgeführt werden:

SORT array(), indexarray%()

indexarray%() muss ein eindimensionales Integer-Array sein, das genauso groß
ist wie das zu sortierende Array. Nach dem Sortieren enthält indexarray%()
den entsprechenden Index zu den ursprünglichen Daten vor dem Sortieren.
(Alles, was zuvor in indexarray%() war, wird überschrieben).

Um auf die sortierten Daten zuzugreifen, kopierst du zuerst das Array, das den
Hauptschlüssel enthält, in ein temporäres Array und sortierst dieses unter
Angabe von indexarray%(). Nach dem Sortieren kann indexarray%() zum
Indizieren der ursprünglichen Arrays verwendet werden.

Zum Beispiel:
DIM city$(100),pop%(100),area!(100),sindex%(100),t$(100)
FOR i = 0 to 100
 t$(i) = city$(i) ‘ temporäre Kopie der Schlüssel
NEXT i
SORT t$(), sindex%() ‘ temporäres Array sortieren,
FÜR i = 0 bis 100
 k = sindex%(i) ‘ Index zum ursprünglichen
Array
 DRUCKE city$(k),pop%(k),area!(k)‘ in sortierter
Reihenfolge aus
NEXT i

Seite198 PicoMite-Benutzerhandbuch

SPI OPEN Geschwindigkeit,
Modus, Bits

oder

SPI READ nbr, array()

oder

SPI WRITE nbr, data1, data2,
data3, … usw.

oder

SPI WRITE nbr, string$

oder

SPI WRITE nbr, array()

oder

SPI CLOSE

Kommunikation über einen SPI-Kanal. Schau dir Anhang D an, um mehr
Details zu erfahren.

„nbr” ist die Anzahl der zu sendenden oder empfangenden Datenelemente.

„data1”, „data2” usw. können Float- oder Integer-Werte sein und im Fall von
WRITE eine Konstante oder ein Ausdruck.

Wenn „string$” benutzt wird, werden „nbr” Zeichen gesendet.

„array” muss ein eindimensionales Array vom Typ Float oder Integer sein, und
„nbr” Elemente werden gesendet oder empfangen.

SPI2 Dieselben Befehle wie für SPI (oben), aber für den zweiten SPI-Kanal.

SPRITE

NUR VGA- UND HDMI-VERSIONEN

Die SPRITE-Befehle werden zum Bearbeiten kleiner Grafiken auf dem VGA-
oder HDMI-Bildschirm verwendet und sind beim Schreiben von Spielen
nützlich.

Sprites funktionieren nur in Framebuffern in den Modi 2 und 3. Sprites werden
aus Effizienzgründen immer als RGB121-„Nibbles” gespeichert.

Die maximale Größe eines Sprites ist MM.HRES-1 und MM.VRES-1. Sieh dir
auch den BLIT-Befehl und die SPRITE()-Funktionen an.

SPRITE CLOSE [#]n Schließt das Sprite „n” und gibt seine Speicherressourcen frei, sodass die
Sprite-Nummer wiederverwendet werden kann. Der Befehl gibt eine
Fehlermeldung aus, wenn andere Sprites aus diesem kopiert werden, es sei
denn, sie wurden zuvor geschlossen.

SPRITE CLOSE ALL Schließt alle Sprites und gibt den gesamten Sprite-Speicher frei. Der
Bildschirm bleibt unverändert.

SPRITE COPY [#]n, [#]m, nbr Erstellt eine Kopie von Sprite „n” in „nbr” neuer Sprites, beginnend mit der
Nummer „m”. Kopierte Sprites verwenden dasselbe geladene Bild wie das
Original, um Speicherplatz zu sparen.

SPRITE HIDE [#]n Entfernt Sprite n von der Anzeige und ersetzt den gespeicherten Hintergrund.
Um einen Bildschirm in einen früheren Zustand zurückzusetzen, sollten Sprites
in umgekehrter Reihenfolge zu ihrer Schreibweise „LIFO” ausgeblendet
werden.

SPRITE HIDE ALL Blendet alle Sprites aus, sodass der Hintergrund bearbeitet werden kann.
Die folgenden Befehle können nicht verwendet werden, wenn alle Sprites
ausgeblendet sind:

SPRITE SHOW (SAFE)
SPRITE HIDE (SAFE, ALL)
SPRITE SWAP
SPRITE MOVE
SPRITE SCROLLR
SPRITE SCROLL

SPRITE
WIEDERHERSTELLEN

Bringt die Sprites zurück, die vorher mit SPRITE HIDE ALL versteckt
wurden.

PicoMite Benutzerhandbuch Seite 199

SPRITE HIDE SAFE [#]n Entfernt Sprite n von der Anzeige und ersetzt den gespeicherten Hintergrund.
Blendet automatisch alle neueren Sprites sowie das angeforderte Sprite aus und
ersetzt sie anschließend. Dadurch wird sichergestellt, dass Sprites, die von
anderen Sprites überdeckt werden, entfernt werden können, ohne dass der
Benutzer die Schreibreihenfolge verfolgen muss. Natürlich ist diese Version
weniger leistungsfähig als die einfache Version und sollte nur verwendet
werden, wenn die Gefahr besteht, dass das Sprite teilweise überdeckt wird.

SPRITE INTERRUPT sub Gibt den Namen der Subroutine an, die aufgerufen wird, wenn eine Sprite-
Kollision auftritt. In Anhang G wird beschrieben, wie du mit der Funktion
SPRITE Details zu den kollidierten Objekten abfragen kannst.

SPRITE READ [#]b, x, y, w, h Damit wird ein Teil der Anzeige in den Speicherpuffer '#b' kopiert. Die
Quellkoordinaten sind 'x' und 'y', die Breite des zu kopierenden
Anzeigebereichs ist 'w' und die Höhe ist 'h'. Wenn dieser Befehl verwendet
wird, wird der Speicherpuffer automatisch erstellt und ausreichend Speicher
zugewiesen. Dieser Puffer kann mit dem Befehl SPRITE CLOSE freigegeben
und der Speicher zurückgewonnen werden.

SPRITE WRITE [#]b, x, y
[,mode]

Kopiert das Sprite „#b“ auf die Anzeige. Die Zielkoordinaten sind „x“ und „y“.
Der optionale Parameter „mode“ ist standardmäßig auf 4 gesetzt und legt fest,
wie die gespeicherten Bilddaten beim Schreiben geändert werden. Es handelt
sich um die bitweise UND-Verknüpfung der folgenden Werte:

&B001 = von links nach rechts gespiegelt
&B010 = von oben nach unten gespiegelt
&B100 = transparente Pixel nicht kopieren

SPRITE LOAD fname$
[,start_sprite_number] [,mode]

Lädt die Datei „fname$”, die als originale Colour Maximite-Sprite-Datei
formatiert sein muss. Das Dateiformat findest du im Original-Handbuch zur
Sprache Colour Maximite MMBasic. Du kannst mehrere Sprite-Dateien laden,
indem du für jede Datei eine andere „start_sprite_number” angibst. Du musst
dafür sorgen, dass sich die Sprites nicht überlappen.

Der Modus ist standardmäßig auf Null eingestellt, in diesem Fall werden die
CMM1/CMM2-Farbcodes verwendet

(Schwarz, Blau, Grün, Cyan, Rot, Magenta, Gelb, Weiß, Myrte, Kobalt,
Mittelgrün, Cerulean, Rost, Fuchsia, Braun, Flieder).

Wenn der Modus auf 1 gesetzt ist, werden die RGB121-Farbcodes verwendet:
(Schwarz, Blau, Myrte, Kobalt, Mittelgrün, Cerulean, Grün, Cyan, Rot,
Magenta, Rost, Fuchsia, Braun, Flieder, Gelb, Weiß).

SPRITE LOADARRAY [#]n,
w, h, array%()

Erstellt das Sprite „n” mit der Breite „w” und der Höhe „h”, indem w*h
RGB888-Werte aus „array%()” gelesen werden. Die RGB888-Werte müssen in
der Reihenfolge der Spalten und dann der Zeilen beginnend oben links
gespeichert werden.

Dadurch kann der Programmierer einfache Sprites in einem Programm
erstellen, ohne sie von der Festplatte laden oder vom Display lesen zu müssen.
Die Firmware gibt eine Fehlermeldung aus, wenn „array%()” nicht groß genug
ist, um die erforderliche Anzahl von Werten aufzunehmen.

SPRITE LOADBMP [#]b,
fname$ [,x] [,y] [,w] [,h]

Lädt einen Blit-Puffer aus einer 24-Bit-BMP-Bilddatei. „x” und „y” sagen dir,
wo im Bild das Laden anfangen soll, und „w” und „h” geben die Breite und
Höhe des Bereichs an, der geladen werden soll.
Beispiel: SPRITE LOAD #1,"image1", 50,50,100,100 lädt einen
Bereich von 100 Pixeln im Quadrat mit der oberen linken Ecke bei 50, 50 aus
dem Bild image1.bmp.

Seite200 PicoMite-Benutzerhandbuch

SPRITE LOADPNG [#]b,
fname$ [,transparent]
[,alphacut]

Lädt SPRITE Nummer „b” aus der PNG-Datei „fname$”. Wenn keine
Erweiterung angegeben ist, wird automatisch .png an den Dateinamen
angehängt. Die Datei muss im RGBA8888-Format vorliegen, was die normale
Standardeinstellung ist. Der optionale Parameter „transparent” (Standardwert
0) gibt einen der Farbcodes (0-15) an, der den Pixeln in der PNG-Datei mit
einem Alpha-Wert unter „alphacut” (Standardwert 20) zugewiesen wird. Die
variable Transparenz kann dann mit dem Befehl SPRITE SET
TRANSPARENT n oder FRAMEBUFFER LAYER n verwendet werden, um
das Sprite mit dem transparenten Bereich ausgeblendet anzuzeigen.

SPRITE MOVE Führt eine einzelne atomare Transaktion aus, die alle Sprites neu positioniert,
für die zuvor mit dem Befehl SPRITE NEXT eine Positionsänderung festgelegt
wurde. Kollisionen werden erkannt, sobald alle Sprites verschoben sind, und
wie bei einem Scroll gemeldet.

SPRITE NEXT [#]n, x, y Setzt die X- und Y-Koordinaten des Sprites, die beim nächsten Bildlauf oder
bei Ausführung des Befehls SPRITE MOVE verwendet werden sollen. Durch
die Verwendung von SPRITE NEXT anstelle von SPRITE SHOW können
mehrere Sprites als Teil derselben atomaren Transaktion verschoben werden.

SPRITE SCROLL x, y [,col] Verschiebt den Hintergrund und alle Sprites auf dem aktiven Framebuffer (L
oder N) um „x” Pixel nach rechts und „y” Pixel nach oben. „x” kann eine
beliebige Zahl zwischen -MM.HRES-1 und MM.HRES-1 sein, „y” kann eine
beliebige Zahl zwischen -MM.VRES-1 und MM.VRES-1 sein.
Sprites auf einer anderen Ebene als Null bleiben an ihrer Position auf dem
Bildschirm. Standardmäßig wird das Bild beim Scrollen umgebrochen. Wenn
'col' angegeben ist, ersetzt die Farbe den Bereich hinter dem gescrollten Bild.
Wenn 'col' auf -1 gesetzt ist, bleibt der gescrollte Bereich unverändert.

SPRITE SET
TRANSPARENT n

Legt den Farbcode (0-15) fest, der als transparent verwendet wird, wenn
Sprites über einem Hintergrund angezeigt werden (Standardwert ist 0).

SPRITE SHOW [#]n, x,y,
layer [,options]

Zeigt das Sprite „n” auf dem Bildschirm an, wobei die obere linke Ecke bei
den Koordinaten „x”, „y” liegt.
Sprites kollidieren nur mit anderen Sprites auf derselben Ebene, Ebene Null
oder
mit dem Bildschirmrand. Wenn ein Sprite schon auf dem Bildschirm zu sehen
ist, sorgt der
SPRITE SHOW-Befehl das Sprite an die neue Position. Der
Anzeigehintergrund wird als Teil des Befehls gespeichert und ersetzt, wenn das
Sprite ausgeblendet oder weiter verschoben wird.
Der Parameter „options“ ist optional und kann wie folgt eingestellt werden:

Bit 0 gesetzt – von links nach rechts gespiegelt
Bit 1 gesetzt – von oben nach unten gespiegelt
Bit 2 gesetzt – schwarze Pixel werden nicht als transparent behandelt,
Standardwert ist 0

SPRITE SHOW SAFE [#]n,
x,y, layer [,orientation]
[,ontop]

Zeigt ein Sprite an und gleicht automatisch alle anderen Sprites aus, die es
überlappen.
Wenn das Sprite noch nicht angezeigt wird, funktioniert der Befehl genauso
wie SPRITE SHOW.
Wenn das Sprite schon angezeigt wird, wird es verschoben und bleibt in seiner
Position relativ zu anderen Sprites, basierend auf der ursprünglichen
Reihenfolge, in der sie geschrieben wurden. Wenn also Sprite 1 vor Sprite 2
geschrieben wurde und es so verschoben wird, dass es Sprite 2 überlappt, wird
es unter Sprite 2 angezeigt.
Wenn der optionale Parameter „ontop” auf 1 gesetzt ist, wird das verschobene
Sprite zum neuesten Sprite und liegt über allen anderen Sprites, die es
überlappt.
Details zum Orientierungsparameter findest du unter SPRITE SHOW.

PicoMite Benutzerhandbuch Seite 201

SPRITE SWAP [#]n1, [#]n2
[,orientation]

Ersetzt das Sprite „n1” durch das Sprite „n2”. Die Sprites müssen die gleiche
Breite und Höhe haben, und „n1” muss angezeigt werden, sonst kommt es zu
einem Fehler. Mehr Infos zum Orientierungsparameter findest du unter
SPRITE SHOW. Das Ersatz-Sprite übernimmt den Hintergrund vom Original
sowie dessen Position in der Reihenfolge der Zeichnung.

STAR Berechnet die Position eines Himmelsobjekts anhand der aktuellen Uhrzeit und
des Standorts von einem angeschlossenen GPS-Modul.

Dies ist einer von mehreren Befehlen, die hochpräzise astronomische
Berechnungen durchführen, die für die Ausrichtung von Teleskopen oder die
Navigation geeignet sind. Eine detaillierte Beschreibung findest du in der Datei
GPS_Astro_Reference.pdf, die im ZIP-Archiv mit der Firmware enthalten ist.

STATIC variable [, variables]

Die vollständige Syntax
findest du unter DIM.

Definiert eine Liste von Variablennamen, die lokal für die Subroutine oder
Funktion sind. Diese Variablen behalten ihren Wert zwischen den Aufrufen der
Subroutine oder Funktion (im Gegensatz zu Variablen, die mit dem Befehl
LOCAL erstellt wurden).

Dieser Befehl hat genau die gleiche Syntax wie DIM. Der einzige Unterschied
besteht darin, dass die Länge des mit STATIC erstellten Variablennamens und
die Länge des Unterprogramm- oder Funktionsnamens zusammen nicht mehr
als 31 Zeichen betragen dürfen.

Statische Variablen können mit einem Wert initialisiert werden. Diese
Initialisierung wirkt sich nur beim ersten Aufruf der Unterroutine aus (nicht bei
späteren Aufrufen).

STEPPER

NUR RP2350-VERSIONEN

Dieser Befehl bietet ein komplettes System zur Steuerung von bis zu 3
Schrittmotorachsen (X, Y, Z) mit Unterstützung für die Ausführung von G-
Code, Beschleunigungsplanung und Hardware-Endschaltern.

Das wird in der Datei „Stepper_Reference.pdf” im Download-Zip-Paket der
Firmware genau erklärt.

STRUCT Mit diesem Befehl kannst du Strukturen (auch als benutzerdefinierte Typen
bezeichnet) bearbeiten, mit denen verwandte Variablen unterschiedlicher
Typen unter einem einzigen Namen zusammengefasst werden können.

Das wird ausführlich in der Datei MMBasic_Structures_Manual.pdf
beschrieben, die im ZIP-Archiv zum Firmware-Download enthalten ist.

SUB xxx (arg1 [,arg2, …])
 <Anweisungen>
 <Anweisungen>
END SUB

Definiert eine aufrufbare Subroutine. Das ist dasselbe, als würde man
MMBasic während der Ausführung des Programms einen neuen Befehl
hinzufügen.

„xxx” ist der Name der Unterroutine und muss den Regeln für die Benennung
von Variablen entsprechen.

'arg1', 'arg2' usw. sind die Argumente oder Parameter für die Unterroutine. Ein
Array wird durch leere Klammern angegeben, z. B. arg3(). Der Typ des
Arguments kann durch einen Typ-Suffix (z. B. arg1$) oder durch Angabe des
Typs mit AS <Typ> (z. B. arg1 AS STRING) angegeben werden.

Argumente in der Liste des Aufrufers, die eine Variable sind und den richtigen
Typ haben, werden per Referenz an die Subroutine übergeben. Das heißt, dass
alle Änderungen am entsprechenden Argument in der Subroutine auch in die
Variable des Aufrufers kopiert werden und daher nach Beendigung der
Subroutine darauf zugegriffen werden kann. Dem Argument kann das Präfix
BYVAL vorangestellt werden, wodurch dieser Mechanismus verhindert wird
und nur der Wert verwendet wird. Alternativ weist das Präfix BYREF
MMBasic an, dass eine Referenz erforderlich ist, und es wird ein Fehler
generiert, wenn dies nicht möglich ist.

Arrays werden durch Angabe des Array-Namens mit leeren Klammern (z. B.

Seite202 PicoMite-Benutzerhandbuch

arg()) übergeben, immer per Referenz und müssen vom richtigen Typ sein.

Jede Definition muss eine END SUB-Anweisung haben. Wenn diese erreicht
ist, kehrt das Programm zur nächsten Anweisung nach dem Aufruf der
Unterroutine zurück. Der Befehl EXIT SUB kann für einen vorzeitigen
Abbruch verwendet werden.

Du benutzt die Subroutine, indem du ihren Namen und ihre Argumente in
einem Programm wie einen normalen Befehl verwendest. Zum Beispiel:
MySub a1, a2

Wenn die Unterprogramm aufgerufen wird, wird jedes Argument im Aufrufer
mit dem Argument in der Unterprogrammdefinition abgeglichen. Diese
Argumente sind nur innerhalb der Unterprogramm verfügbar. Unterprogramme
können mit einer variablen Anzahl von Argumenten aufgerufen werden. Alle
in der Liste der Unterprogramm ausgelassenen Argumente werden auf Null
oder eine Null-Zeichenkette gesetzt.

Klammern um die Argumentliste sowohl im Aufrufer als auch in der Definition
sind optional.

SYNC time% [,period]

oder

SYNC

Mit dem Befehl SYNC kann der Benutzer sehr präzise zeitgesteuerte
Wiederholungsaktionen (Genauigkeit 1–2 Mikrosekunden) implementieren.

Dazu wird der Befehl erst mal mit dem Parameter time% aufgerufen. Damit
wird eine sich wiederholende Uhr für time% Mikrosekunden eingerichtet. Der
optionale Parameter „period” ändert die Zeit und kann „U” für Mikrosekunden,
„M” für Millisekunden oder „S” für Sekunden sein.

Sobald die Uhr eingerichtet ist, wird das Programm mit dem Befehl SYNC
ohne Parameter daran synchronisiert. Dieser wartet, bis die Uhrperiode
abgelaufen ist. Bei Perioden unter 2 ms ist dies nicht unterbrechbar. Bei
Perioden über 2 ms reagiert das Programm auf Strg-C, aber nicht auf
MMBasic-Interrupts.

Typischerweise wird die Uhr außerhalb einer Schleife eingestellt und dann am
Anfang der Schleife der Befehl SYNC ohne Parameter aufgerufen. Das
bedeutet, dass der Inhalt der Schleife genau einmal pro eingestellter
Taktperiode ausgeführt wird. Das folgende Beispiel würde beispielsweise
einen Servo mit der erforderlichen präzisen 50-Hz-Taktung ansteuern:

SYNC 20, M
DO
 SYNC
 PULSE GP0,n
LOOP

TEMPR START pin [,
Genauigkeit] [, Zeitlimit]

Mit diesem Befehl kannst du eine Umwandlung starten, die auf einem
DS18B20-Temperatursensor läuft, der an „Pin” angeschlossen ist.
Normalerweise reicht die Funktion TEMPR() allein aus, um eine
Temperaturmessung durchzuführen, sodass die Verwendung dieses Befehls
optional ist. Weitere Infos findest du im Abschnitt „Temperatur messen”.

Dieser Befehl startet die Messung am Temperatursensor. Das Programm kann
dann während der Messung andere Aufgaben ausführen und später die
Funktion TEMPR() verwenden, um den Messwert abzurufen. Wenn die
Funktion TEMPR() vor Ablauf der Umwandlungszeit verwendet wird, wartet
die Funktion die verbleibende Umwandlungszeit ab, bevor sie den Wert
zurückgibt.

Es können beliebig viele dieser Umwandlungen (an verschiedenen Pins)
gestartet werden und gleichzeitig laufen.

„precision“ ist die Auflösung der Messung und ist optional. Es ist eine Zahl
zwischen 0 und 3 mit folgender Bedeutung:

0 = 0,5 °C Auflösung, 100 ms Umwandlungszeit.

1 = 0,25 °C Auflösung, 200 ms Umwandlungszeit (dies ist die

PicoMite Benutzerhandbuch Seite 203

Standardeinstellung).

2 = 0,125 °C Auflösung, 400 ms Umwandlungszeit.

3 = 0,0625 °C Auflösung, 800 ms Umwandlungszeit.

Der optionale Zeitüberschreitungsparameter setzt die oben genannten
Umwandlungszeiten außer Kraft, um langsame Geräte zu berücksichtigen.

TEXT x, y, Zeichenfolge$
[,Ausrichtung$] [, Schriftart]
[, Skalierung] [, c] [, bc]

Zeigt eine Zeichenfolge auf dem Videoausgang oder dem angeschlossenen
LCD-Bildschirm an, beginnend bei „x” und „y”.

„string$” ist die anzuzeigende Zeichenfolge. Numerische Daten sollten in eine
Zeichenfolge konvertiert und mit der Funktion Str$() formatiert werden.

„alignment$” ist ein Zeichenfolgenausdruck oder eine Zeichenfolgenvariable,
die aus 0, 1 oder 2 Buchstaben besteht, wobei der erste Buchstabe die
horizontale Ausrichtung um „x” angibt und L, C oder R für LEFT (links),
CENTER (zentriert) oder RIGHT (rechts) sein kann und der zweite Buchstabe
die vertikale Ausrichtung um „y” angibt und T, M oder B für TOP (oben),
MIDDLE (Mitte) oder BOTTOM (unten) sein kann. Die Standardausrichtung
ist links/oben.

Beispiel: „CM” zentriert den Text vertikal und horizontal.

Die Zeichenfolge „alignment$” kann eine Konstante (z. B. „CM”) oder eine
Zeichenfolgenvariable sein. Aus Gründen der Abwärtskompatibilität mit
früheren Versionen von MMBasic kann die Zeichenfolge auch ohne
Anführungszeichen angegeben werden (z. B. CM).

Ein dritter Buchstabe kann in der Ausrichtungszeichenfolge verwendet werden,
um die Drehung des Textes anzugeben. Dies kann „N“ für normale
Ausrichtung, „V“ für vertikalen Text, bei dem jedes Zeichen unter dem
vorherigen von oben nach unten läuft, „I“ für invertierten Text (d. h. auf dem
Kopf stehend), „U“ für eine Drehung des Textes um 90º gegen den
Uhrzeigersinn und „D“ für eine Drehung des Textes um 90º im Uhrzeigersinn
sein.

„font” und „scale” sind optional und werden standardmäßig durch die mit dem
Befehl FONT festgelegten Werte ersetzt.

„c” ist die Zeichenfarbe und „bc” ist die Hintergrundfarbe. Sie sind optional
und standardmäßig auf die aktuellen Vordergrund- und Hintergrundfarben
eingestellt.

Eine Definition der Farben und Grafikkoordinaten findest du im Kapitel
Grafikbefehle und -funktionen.

TILE x, y [,foreground]
[,background]
[,nbr_tiles_wide]
[,nbr_tiles_high]

TILE HEIGHT n

NUR VGA- ODER HDMI-VERSIONEN MODUS 1

Legt die Farbe für eine oder mehrere Kacheln auf dem Bildschirm fest.

Im Standard-Monochrom-Modus wird der Bildschirm in 80x40 Kacheln mit
jeweils 8x12 Pixeln aufgeteilt. Dies entspricht der Schriftart 1 und ermöglicht
eine vollständige Farbcodierung im Editor im Monochrom-Modus.

Jeder Kachel kann eine andere Vordergrund- und Hintergrundfarbe zugewiesen
bekommen, die aus den folgenden Farben ausgewählt werden kann: Weiß,
Gelb, Lila, Braun, Fuchsia, Rostrot, Magenta, Rot, Cyan, Grün, Cerulean,
Mittelgrün, Kobalt, Myrte, Blau und Schwarz.

„x” und „y” sind die Koordinaten des Startblocks (0-79, 0-39).

„foreground” und „background” sind die neuen ausgewählten Farben.
„nbr_tiles_wide” und „nbr_tiles_high” sind die Anzahl der zu ändernden
Kacheln.

Die Änderung passiert sofort und hat keinen Einfluss auf den Text oder die
Grafiken, die gerade in den Kacheln angezeigt werden (nur auf die Farben).

Legt die Höhe der Kacheln fest. „n“ kann zwischen 12 und 480 (RP2040) oder
zwischen 8 und 480 (RP2350) liegen.

Seite204 PicoMite-Benutzerhandbuch

TIME$ = „HH:MM:SS”

oder

TIME$ = „HH:MM”

oder

TIME$ = „HH“

Stellt die Zeit der internen Uhr ein. MM und SS sind optional und werden
standardmäßig auf Null gesetzt, wenn sie nicht angegeben werden. Zum
Beispiel setzt TIME$ = "14:30" die Uhr auf 14:30 Uhr mit null Sekunden.

Mit OPTION RTC AUTO ENABLE startet die PicoMite-Firmware mit der in
RTC programmierten TIME$. Ohne OPTION RTC AUTO ENABLE startet
die Firmware mit TIME$="00:00:00".

TIMER = msec Setzt den Timer auf eine bestimmte Anzahl von Millisekunden zurück.
Normalerweise wird das nur benutzt, um den Timer auf Null zurückzusetzen,
aber du kannst ihn auf jede beliebige positive Zahl einstellen.

Weitere Infos findest du unter der TIMER-Funktion.

TRACE ON

oder

TRACE OFF

oder

TRACE LIST nn

TRACE ON/OFF schaltet die Trace-Funktion ein bzw. aus. Diese Funktion
zeigt während der Programmausführung die Nummer jeder Zeile (gezählt vom
Anfang des Programms) in eckigen Klammern an. Das ist beim Debuggen von
Programmen echt praktisch.

TRACE LIST zeigt die letzten „nn” ausgeführten Zeilen im oben
beschriebenen Format an. MMBasic protokolliert immer die ausgeführten
Zeilen, sodass diese Funktion immer verfügbar ist (d. h. sie muss nicht
eingeschaltet werden).

TRIANGLE X1, Y1, X2, Y2,
X3, Y3 [, C [, FILL]]

Zeichnet ein Dreieck auf dem angeschlossenen Videoausgang oder LCD-
Display mit den Ecken bei X1, Y1 und X2, Y2 und X3, Y3. „C” ist die Farbe
des Dreiecks und standardmäßig die aktuelle Vordergrundfarbe. „FILL” ist die
Füllfarbe und standardmäßig keine Füllung (sie kann auch auf -1 für keine
Füllung gesetzt werden).

Alle Parameter können als Arrays angegeben werden, und die Software
zeichnet die Anzahl der Dreiecke, die durch die Abmessungen des kleinsten
Arrays bestimmt wird, es sei denn, X1 = Y1 = X2 = Y2 = X3 = Y3 = -1. In
diesem Fall wird die Verarbeitung an dieser Stelle beendet. „x1”, „y1”, „x2”,
„y2”, „x3” und „y3” müssen alle Arrays oder alle einzelne
Variablen/Konstanten sein, sonst wird der Fehler „c” ausgegeben. „c” und
„fill” können entweder Arrays oder einzelne Variablen/Konstanten sein.

TRIANGLE SAVE [#]n,
x1,y1,x2,y2,x3,y3

TRIANGLE RESTORE [#]n

Speichert einen dreieckigen Bereich des Bildschirms im Puffer #n.

Stellt einen gespeicherten dreieckigen Bereich des Bildschirms wieder her und
löscht den gespeicherten Puffer.

TURTLE Die Firmware hat eine komplette Turtle-Grafik-Engine. Sieh dazu Anhang H.

TYP struct-name
 Struktur-Element1, Struktur-
Element2
 …

END TYPE

Definiere eine Struktur (auch als benutzerdefinierter Typ bezeichnet), mit der
verwandte Variablen unterschiedlicher Typen unter einem einzigen Namen
zusammengefasst werden können.

Das wird ausführlich in der Datei MMBasic_Structures_Manual.pdf
beschrieben, die im ZIP-Archiv zum Herunterladen der Firmware enthalten ist.

FIRMWARE
AKTUALISIEREN

NICHT BEI USB-VERSIONEN

Versetzt die PicoMite-Firmware in den Firmware-Update-Modus (entspricht
dem Einschalten bei gedrückter BOOTSEL-Taste). Dieser Befehl ist nur an der
Eingabeaufforderung verfügbar.

VAR SAVE var [, var]…

oder

VAR RESTORE

VAR SAVE speichert eine oder mehrere Variablen in einem nichtflüchtigen
Flash-Speicher, wo sie später wiederhergestellt werden können (normalerweise
nach einem Stromausfall).

„var” kann eine beliebige Anzahl von numerischen oder

PicoMite Benutzerhandbuch Seite 205

oder

VAR CLEAR

Zeichenfolgenvariablen und/oder Arrays sein. Arrays werden durch leere
Klammern angegeben. Beispiel: var()

Der Befehl VAR SAVE kann mehrmals benutzt werden. Vorher gespeicherte
Variablen werden mit ihrem neuen Wert aktualisiert, und alle neuen Variablen
(die vorher nicht gespeichert wurden) werden zur späteren Wiederherstellung
zur gespeicherten Liste hinzugefügt.

VAR RESTORE ruft die zuvor gespeicherten Variablen ab und fügt sie (und
ihre Werte) in die Variablentabelle ein.

VAR CLEAR löscht alle gespeicherten Variablen.

Dieser Befehl wird normalerweise zum Speichern von Kalibrierungsdaten,
Optionen und anderen Daten verwendet, die sich nicht oft ändern, aber auch
bei einem Stromausfall erhalten bleiben müssen. Normalerweise wird der
Befehl VAR RESTORE am Anfang des Programms platziert, damit zuvor
gespeicherte Variablen wiederhergestellt werden und dem Programm beim
Start sofort zur Verfügung stehen. Hinweise:

 Der für diesen Befehl verfügbare Speicherplatz beträgt 16 KB.

 Die Verwendung von VAR RESTORE ohne vorherige Speicherung hat
keine Auswirkung und erzeugt keinen Fehler.

 Wenn bei der Verwendung von RESTORE bereits eine Variable mit
demselben Namen vorhanden ist, wird deren Wert überschrieben.

 Gespeicherte Arrays müssen (mit DIM) deklariert werden, bevor sie
wiederhergestellt werden können.

 Beachte, dass String-Arrays den diesem Befehl zugewiesenen Speicher
schnell vollständig belegen können. Der Qualifizierer LENGTH kann bei
der Deklaration eines String-Arrays verwendet werden, um die Größe des
Arrays zu reduzieren (siehe Befehl DIM). Bei normalen String-Variablen
ist dies nicht erforderlich.

 Die gespeicherten Variablen werden automatisch durch ein Firmware-
Upgrade, durch den Befehl NEW oder beim Laden eines neuen Programms
über AUTOSAVE, XMODEM usw. gelöscht.

WATCHDOG-
Zeitüberschreitung

oder

WATCHDOG OFF

oder

WATCHDOG HW-Timeout

oder

WATCHDOG HW AUS

Startet den Watchdog-Timer, der die Prozessoren automatisch neu startet,
wenn die Zeit abgelaufen ist. Das kann genutzt werden, um nach einem
Problem, das das laufende Programm gestoppt hat (wie eine Endlosschleife
oder ein Programmier- oder anderer Fehler), wieder hochzufahren. Das kann
bei unbeaufsichtigten Steuerungen wichtig sein.

Die Zeitüberschreitung kann entweder im System-Timer-Interrupt
(WATCHDOG-Befehl) oder als echter CPU-/Hardware-Watchdog
(WATCHDOG HW-Befehl) verarbeitet werden.

Wenn der Hardware-Watchdog verwendet wird, hat der Timer eine maximale
Dauer von 8,3 Sekunden. Für den Software-Watchdog gibt's keine solche
Begrenzung.

„timeout” ist die Zeit in Millisekunden (ms), bevor ein Neustart erzwungen
wird. Dieser Befehl sollte an strategischen Stellen im laufenden BASIC-
Programm platziert werden, um den Watchdog-Timer ständig zurückzusetzen
(auf „timeout”) und so zu verhindern, dass er bis Null herunterzählt.

Wenn der Timer auf Null läuft (vielleicht weil das BASIC-Programm nicht
mehr läuft), wird die PicoMite-Firmware automatisch neu gestartet und die
automatische Variable MM.WATCHDOG wird auf „true” (also 1) gesetzt, was
bedeutet, dass ein Fehler aufgetreten ist. Bei einem normalen Start wird
MM.WATCHDOG auf „false” (also 0) gesetzt. Beachte, dass OPTION
AUTORUN angegeben werden muss, damit das Programm neu gestartet wird.

Mit WATCHDOG OFF kann der Watchdog-Timer deaktiviert werden (dies ist
die Standardeinstellung bei einem Reset oder beim Einschalten). Der Timer
wird auch ausgeschaltet, wenn das Break-Zeichen (STRG-C) auf der Konsole

Seite206 PicoMite-Benutzerhandbuch

verwendet wird, um ein laufendes Programm zu unterbrechen.

WII [CLASSIC] OPEN
[,interrupt]

WII [CLASSIC] CLOSE

Öffnet einen WII Classic-Controller und führt eine Hintergrundabfrage des
Geräts durch. Der Wii Classic muss an die durch OPTION SYSTEM I2C
angegebenen Pins angeschlossen sein, was eine Voraussetzung ist.

Open versucht, mit dem Wii Classic zu kommunizieren, und gibt einen Fehler
zurück, wenn er nicht gefunden wird. Wenn er gefunden wird, tastet die
Firmware die Wii-Daten im Hintergrund mit einer Rate von 50 Hz ab. Wenn
eine optionale Benutzerunterbrechung angegeben ist, wird diese ausgelöst,
wenn sich eine der Tasten ändert (sowohl ein- als auch ausgeschaltet).

Informationen zum Auslesen von Daten aus dem Wii Classic findest du unter
der Funktion DEVICE.

CLOSE stoppt die Hintergrundabfrage und deaktiviert alle angegebenen
Interrupts.

WII NUNCHUCK OPEN
[,interrupt]

WII NUNCHUCK CLOSE

Öffnet einen WII Nunchuck-Controller und führt eine Hintergrundabfrage des
Geräts durch. Der Wii Nunchuck muss an die durch OPTION SYSTEM I2C
angegebenen Pins angeschlossen sein, was eine Voraussetzung ist.

Versucht, mit dem Wii Nunchuck zu reden, und gibt 'ne Fehlermeldung raus,
wenn er nicht gefunden wird. Wenn er gefunden wird, checkt die Firmware die
Wii-Daten im Hintergrund mit 'ner Rate von 50 Hz. Wenn 'ne optionale
Benutzerunterbrechung angegeben ist, wird die ausgelöst, wenn sich einer der
Knöpfe ändert (sowohl ein- als auch ausgeschaltet).

Wie man Daten vom Wii Nunchuck liest, erfährst du in der DEVICE-Funktion.

CLOSE stoppt die Hintergrundabfrage und deaktiviert alle angegebenen
Unterbrechungen.

WEB

NUR WEBMITE

Die WEB-Befehle werden verwendet, um die Internetfunktionen des WebMite
zu verwalten.

WEB CONNECT [ssid$,
passwd$, [name$]
[,ipaddress$, mask$,
gateway$]]

Dieser Befehl ohne optionale Parameter stellt, wenn möglich, eine Verbindung
zum Standardnetzwerk her (wie zuvor mit OPTION WIFI festgelegt) oder
stellt mit den optionalen Parametern eine Verbindung zum angegebenen
Netzwerk her und richtet OPTION WIFI für die zukünftige Verwendung ein.

WEB MQTT CONNECT
addr$, port, user$, passwd$ [,
interrupt]

Stellt eine Verbindung zu einem MQTT-Broker her.

„addr$” ist die IP-Adresse, „port” ist die zu verwendende Portnummer, „user$”
ist der Benutzername, „passwd$” ist das Passwort des Kontos und „interrupt”
ist optional und, falls angegeben, die Subroutine, die beim Empfang einer
Nachricht aufgerufen wird.

WEB CONNECT trennt die Verbindung zu einem zuvor verbundenen
Netzwerk nicht, sollte also nur verwendet werden, wenn vorher nichts
eingerichtet wurde oder wenn ein zuvor konfiguriertes Netzwerk nicht aktiv ist
oder wenn ein zuvor konfiguriertes Netzwerk beim Booten keine Verbindung
herstellen konnte (keine Parameter).

WEB MQTT PUBLISH
topic$, msg$, [,qos] [,retain]

Veröffentlicht Inhalte in einem MQTT-Broker-Thema.

„topic$” ist der Name des Themas und „msg$” ist die Nachricht/

„qos” ist die optionale Dienstgüte mit den Werten 0, 1 oder 2 (Standardwert ist
1).

PicoMite Benutzerhandbuch Seite 207

WEB MQTT SUBSCRIBE
topic$ [,qos]

Abonniere ein MQTT-Broker-Thema.

„topic$“ ist der Name des Themas und „qos“ ist die optionale Dienstqualität
mit den Werten 0, 1 oder 2 (Standard ist 1).

WEB MQTT UNSUBSCRIBE
topic$

Abonnement eines MQTT-Broker-Themas kündigen.

„topic$” ist der Name des Themas.

WEB MQTT CLOSE Schließt eine dauerhafte MQTT-Verbindung.

WEB NTP [Zeitversatz [,
NTPserver$]] [,Zeitlimit]]]

Hol dir das Datum/die Uhrzeit von einem NTP-Server und stell die interne
WebMite-Uhr ein.

„timeoffset” ist die lokale Zeitzone. Wenn das weggelassen wird, wird das
Datum/die Uhrzeit auf GMT eingestellt. „NTPserver$” ist der zu verwendende
Zeitserver. Wenn das weggelassen wird, wird standardmäßig ein
internationaler Zeitserverpool verwendet. „timeout” ist die optionale
Zeitüberschreitung in Millisekunden und ist standardmäßig auf 5000
eingestellt.

WEB OPEN TCP CLIENT
address$, port

Öffnet eine TCP-Client-Verbindung zu einem WEB-Server.

„address$“ ist eine Zeichenfolge und die Adresse des Servers, mit dem eine
Verbindung hergestellt werden soll. Es kann sich entweder um eine URL (z.
B. „api.openweathermap.org“) oder eine IP-Adresse (z. B. „192.168.1.111“)
handeln. „port“ ist die Nummer des zu verwendenden Ports.

Wird zusammen mit WEB TCP CLIENT REQUEST verwendet, um den
Server abzufragen.

Beachte, dass nur eine CLIENT-Verbindung erlaubt ist.

WEB OPEN TCP STREAM
address$, port

Öffnet eine TCP-Client-Verbindung zu einem WEB-Server wie WEB OPEN
TCP CLIENT, verbindet aber die WEB TCP CLIENT STREAM-
Empfängerlogik statt der Logik für WEB TCP CLIENT REQUEST.

„address$“ ist eine Zeichenfolge und die Adresse des Servers, mit dem eine
Verbindung hergestellt werden soll. Es kann sich entweder um eine URL (z.
B. „api.openweathermap.org“) oder eine IP-Adresse (z. B. „192.168.1.111“)
handeln. „port“ ist die Nummer des zu verwendenden Ports.

Beachte, dass eine CLIENT-Verbindung erlaubt ist.

WEB SCAN [array%()] Sucht nach allen verfügbaren WLAN-Verbindungen. Wenn „array%()“
angegeben ist, wird die Ausgabe in einer Longstring gespeichert, andernfalls
wird sie an die Konsole ausgegeben. Der Befehl kann unabhängig davon
verwendet werden, ob bereits eine Netzwerkverbindung aktiv ist oder nicht.

WEB TCP CLIENT
REQUEST request$, buff%()
[,timeout]

Sendet eine Anfrage an den mit WEB OPEN TCP CLIENT geöffneten
Remote-Server und wartet auf eine Antwort.

„request$“ ist eine Zeichenfolge und die Anfrage, die an den Server gesendet
werden soll. „buff%()“ ist ein Integer-Array, das die Antwort als
LONGSTRING empfängt. Die Größe dieses Puffers begrenzt die vom Server
empfangene Datenmenge.

'timeout' ist die optionale Zeitüberschreitung in Millisekunden und
standardmäßig auf 5000 gesetzt.

Wenn die Anfrage zeitlich begrenzt ist, kommt es zu einem Fehler, andernfalls
werden die empfangenen Daten im LONGSTRING 'buff%()' gespeichert.
Wenn es sich bei den empfangenen Daten um eine JSON-Zeichenkette handelt,
kann die Funktion JSON$() zum Parsen verwendet werden.

WEB TCP CLIENT STREAM
command$, buffer%(),
readpointer%, writepointer%

Stellt eine Verbindung zu einem Server her, der zuvor mit WEB OPEN TCP
STREAM geöffnet wurde.

'command$' ist eine Zeichenkette und die Anfrage, die an den Server gesendet

Seite208 PicoMite-Benutzerhandbuch

werden soll.

'buffer%()' ist ein Integer-Array, das die laufenden Antworten empfängt und
als zirkulärer Puffer für empfangene Bytes fungiert.

Die Firmware verwaltet den Parameter „writepointer%”, wenn die Daten vom
Server eintreffen.

„readpointer%” sollte vom Basic-Programm gepflegt werden, da es Daten aus
dem Ringpuffer entfernt.

Wenn „writepointer%“ „readpointer%“ einholt, wird „readpointer%“ erhöht,
um ein Byte voraus zu bleiben, und eingehende Daten gehen verloren.

Dieser Befehl ist so konzipiert, dass er mit dem Befehl PLAY STREAM
kompatibel ist, um die Implementierung von Streaming-Internet-Audio zu
ermöglichen.

WEB CLOSE TCP CLIENT Schließt die mit WEB OPEN TCP CLIENT geöffnete Verbindung zum
Remote-Server. Dies muss geschehen, bevor ein weiterer Öffnungsversuch
unternommen wird.

WEB TCP INTERRUPT
InterruptSub

Startet den TCP-Server. „InterruptSub” ist die Subroutine, die aufgerufen wird,
wenn eine Anfrage an den TCP-Server gestellt wird (d. h. eine Unterbrechung).

Beachte, dass zuerst der Befehl OPTION WIFI und dann der Befehl OPTION
TCP SERVER PORT verwendet werden muss, um den TCP-Server zu
aktivieren.

WEB TCP READ cb%, buff%
()

Lies die Daten von einer möglichen TCP-Verbindung 'cb%'. 'buff%()' ist ein
Array, das alle Daten von dieser Verbindung als Longstring empfängt. Die
Größe dieses Puffers bestimmt, wie viele Daten vom Remote-Client
empfangen werden können. Wenn über diese Verbindung nichts empfangen
wird, gibt das Programm eine leere Zeichenfolge zurück (d. h. LLEN(buff%
())=0).

Wenn Daten empfangen wurden, muss das BASIC-Programm mit einem der
WEB TRANSMIT-Befehle antworten, um zu reagieren und die Verbindung zu
schließen.

WEB TCP SEND cb%, data%
()

WEB TCP CLOSE cb%

Diese beiden Befehle bieten mehr Flexibilität bei der Verwendung des TCP-
Servers. Im Gegensatz zu WEB TRANSMIT PAGE oder WEB TRANSMIT
FILE erstellt WEB TCP SEND weder einen Header noch schließt es die TCP-
Verbindung nach der Übertragung. Es sendet einfach genau das, was sich in
LONGSTRING data%() befindet, und es ist Aufgabe des Basic-
Programmierers, die Verbindung zum richtigen Zeitpunkt zu schließen.

WEB TRANSMIT CODE cb
%, nnn%

Sendet eine numerische Antwort an die offene TCP-Verbindung „cb%” und
schließt dann die Verbindung.

Typisch wäre TRANSMIT CODE cb%, 404, um anzuzeigen, dass die Seite
nicht gefunden wurde.

WEB TRANSMIT FILE cb%,
Dateiname$, Inhaltstyp

Erstellt einen HTTP 1.1-Header mit dem angegebenen „content-type$”, sendet
ihn und sendet dann den Inhalt der Datei an die offene TCP-Verbindung cb%.
Nach Abschluss wird die Verbindung geschlossen.

„content-type$” ist ein MIME-Typ, der als Zeichenfolge ausgedrückt wird. Z.
B. „image/jpeg”.

PicoMite Benutzerhandbuch Seite 209

WEB TRANSMIT PAGE cb
%, Dateiname$ [,Puffergröße]

Erstellt einen HTTP 1.1-Header, sendet ihn und schickt dann den Inhalt der
Datei an die offene TCP-Verbindung cb%. Nach Abschluss wird die
Verbindung geschlossen.

MMBasic ersetzt alle MMBasic-Variablen oder Ausdrücke, die in der Datei in
geschweiften Klammern definiert sind, z. B. {myvar%}, durch aktuelle Werte.
Variablen können einfach, Array-Elemente oder Ausdrücke sein.

Eine öffnende geschweifte Klammer kann mit {{ in die Ausgabe
aufgenommen werden.

Standardmäßig weist der Befehl einen Puffer in der Größe der Datei + 4096
Bytes zu, um die zu übertragende Seite zu erstellen. Wenn die Seite jedoch
komplex ist und viele MMBasic-Variablen enthält, die Text erzeugen, der
größer als der Variablenname ist, kann es sein, dass der Puffer nicht groß
genug ist. In diesem Fall kann der Benutzer den zusätzlich benötigten
Speicherplatz angeben (Standardwert ist 4096, wenn nichts angegeben ist).

WEB UDP INTERRUPT
intname

Richtet eine BASIC-Interrupt-Routine ein, die bei jedem Empfang eines UDP-
Datagramms ausgelöst wird. Der Inhalt wird in MM.MESSAGE$ gespeichert.
Die IP-Adresse des Absenders wird in MM.ADDRESS$ gespeichert.

WEB UDP SEND addr$, port,
data

Wird verwendet, um ein Datagramm an einen entfernten Empfänger zu senden.
In diesem Fall muss die IP-Adresse angegeben werden, die entweder eine
numerische Adresse (z. B. „192.168.1.147“) oder eine normale Textadresse (z.
B. „google.com“) sein kann. Die Portnummer des Empfängers muss ebenfalls
angegeben werden, ebenso wie die Nachricht selbst. Der Befehl SEND kann
als Antwort auf eine eingehende Nachricht oder eigenständig verwendet
werden.

WS2812 Typ, Pin, Nr., Wert%
[()]

Dieser Befehl steuert einen oder mehrere WS2812-LED-Chips, die an „Pin“
angeschlossen sind. Beachte, dass der Pin vor Verwendung dieses Befehls auf
einen digitalen Ausgang eingestellt werden muss.

 „type” ist ein einzelnes Zeichen, das den Typ des angesteuerten Chips angibt:

O = Original WS2812

B = WS2812B

S = SK6812

W = SK6812W (RGBW)

„nbr“ ist die Anzahl der LEDs in der Kette (1 bis 256). Das Array „value%()“
sollte ein Integer-Array sein, dessen Größe genau der Anzahl der
anzusteuernden LEDs entspricht.

Bei den ersten drei Varianten sollte jedes Element im Array die Farbe im
normalen RGB888-Format enthalten (d. h. 0 bis &HFFFFFF).

Für den Typ W nimm einen RGBW-Wert (0-&HFFFFFFFF).

Wenn nur eine LED angeschlossen ist, sollte für „value%“ eine einzelne
Ganzzahl verwendet werden (also kein Array).

XMODEM SEND

oder

XMODEM SEND file$

oder

XMODEM RECEIVE

oder

XMODEM RECEIVE file$

oder

XMODEM CRUNCH

Überträgt ein BASIC-Programm mit dem XModem-Protokoll zu oder von
einem Remote-Computer. Die Übertragung läuft über die USB-
Konsolenverbindung.

XMODEM SEND sendet das aktuelle Programm, das im Programmspeicher
des PicoMite gespeichert ist, an das Remote-Gerät.

XMODEM RECEIVE nimmt ein vom Remote-Gerät gesendetes Programm an
und speichert es im Programmspeicher des PicoMite, wobei das dort aktuell
gespeicherte Programm überschrieben wird.

In beiden Fällen kannst du auch „file$” angeben, wodurch die Daten zu/von
einer Datei auf dem Flash-Dateisystem oder der SD-Karte übertragen werden.
Wenn die Datei schon da ist, wird sie beim Empfang einer Datei

Seite210 PicoMite-Benutzerhandbuch

überschrieben.

Beachte, dass die Daten im RAM gepuffert werden, was die maximale
Übertragungsgröße begrenzt. Dieser Befehl erstellt auch eine Sicherungskopie
des Programms im Flash-Speicher, die automatisch abgerufen wird, wenn die
CPU zurückgesetzt wird oder die Stromversorgung ausfällt.

Die Option CRUNCH funktioniert wie RECEIVE, entfernt jedoch vor dem
Speichern alle Kommentare, Leerzeilen und unnötigen Leerzeichen aus dem
Programm. Dies kann bei großen Programmen verwendet werden, damit sie in
den begrenzten Speicher passen.

SEND, RECEIVE und CRUNCH können mit S, R und C abgekürzt werden.

Das XModem-Protokoll braucht ein kooperierendes Softwareprogramm, das
auf dem Remote-Computer läuft und mit dessen serieller Schnittstelle
verbunden ist. Es wurde mit Tera Term unter Windows getestet und es wird
empfohlen, dieses Programm zu verwenden.

Nachdem du den XMODEM-Befehl in MMBasic ausgeführt hast, wählst du:
 Datei -> Übertragen -> XMODEM -> Empfangen/Senden
 im Tera Term-Menü, um die Übertragung zu starten.

Die Übertragung kann bis zu 15 Sekunden dauern, bis sie startet. Wenn der
XMODEM-Befehl die Kommunikation nicht herstellen kann, kehrt er nach 60
Sekunden zur MMBasic-Eingabeaufforderung zurück und lässt den
Programmspeicher unberührt.

Lade Tera Term von http://ttssh2.sourceforge.jp/ herunter.

YMODEM SEND

oder

YMODEM SEND Datei$

oder

YMODEM RECEIVE

oder

YMODEM RECEIVE Datei$

oder

YMODEM CRUNCH

Nur für RP2350-Versionen ohne USB

Dieser Befehl ist wie XMODEM, überträgt Dateien aber viel schneller (>10x)
über eine serielle CDC-Verbindung.
YMODEM unterscheidet sich von XMODEM dadurch, dass die Nachricht den
Dateinamen enthält.
Das heißt, wenn du eine Datei vom Pico an einen Computer sendest, verwendet
das empfangende Programm automatisch denselben Namen, den du beim
Senden angegeben hast.
Wenn die Datei schon da ist, erhöht der Empfänger automatisch die
Versionsnummer im Namen der empfangenen Datei.
fred1.bas, fred2.bas usw.
Beim Senden aus dem Speicher mit YMODEM S gibt es zwei Möglichkeiten.
Wenn die Datei vom Laufwerk A: oder B: geladen wurde, hat sie einen
versteckten Dateinamen, der dann benutzt wird.
Wenn die Datei mit dem Editor erstellt oder automatisch gespeichert wurde,
hat die empfangene Datei automatisch den Namen FILEn.DAT
Es liegt in der Verantwortung des empfangenden Programms, anzugeben, wo
die Datei gespeichert werden soll.
Bei Teraterm ist das eine Option, die du im allgemeinen
Einstellungsbildschirm unter „Dateiübertragungsordner” einstellen kannst.
Wenn du eine Datei auf dem Pico empfängst, kannst du den Namen und das
Verzeichnis ganz normal frei wählen.
Hinweis: YMODEM reagiert sehr empfindlich auf die Qualität der Verbindung
und die USB-Implementierung auf dem Host. Wenn es bei dir nicht
funktioniert, verwende weiterhin XMODEM.

PicoMite Benutzerhandbuch Seite 211

http://ttssh2.sourceforge.jp/

Funktionen
Detaillierte Auflistung
Beachte, dass die Funktionen im Zusammenhang mit Kommunikationsfunktionen (I2C, 1-Wire und SPI) hier
nicht aufgeführt sind, sondern in den Anhängen am Ende dieses Dokuments beschrieben werden.

Eckige Klammern zeigen an, dass der Parameter oder die Zeichen optional sind.

ABS(Zahl) Gibt den absoluten Wert des Arguments „Zahl” zurück (d. h. alle negativen
Vorzeichen werden entfernt und eine positive Zahl zurückgegeben).

ACOS(Zahl) Gibt den inversen Kosinus des Arguments „Zahl” in Radianten zurück.

ASC(Zeichenfolge$) Gibt den ASCII-Code (also den Byte-Wert) für den ersten Buchstaben in
„Zeichenfolge$” zurück.

ASIN(Zahl) Gibt den inversen Sinuswert des Arguments „Zahl” in Radianten zurück.

ATN(Zahl) Gibt den Arkustangens des Arguments „number” in Radianten zurück.

ATAN2(y, x) Gibt den Arkustangens der beiden Zahlen x und y als Winkel in Radianten
zurück.

Radiant ausgedrückt.

Das ist ähnlich wie die Berechnung des Arkustangens von y / x, nur dass die
Vorzeichen

beider Argumente verwendet werden, um den Quadranten des Ergebnisses zu
bestimmen.

BIN$(Zahl [, Zeichen]) Gibt eine Zeichenfolge zurück, die den Binärwert (Basis 2) für die „Zahl”
angibt.

„Zeichen” ist optional und gibt die Anzahl der Zeichen in der Zeichenfolge an,
wobei Null als führendes Auffüllzeichen verwendet wird.

BIN2STR$(Typ, Wert [,BIG]) Gibt eine Zeichenfolge zurück, die die binäre Darstellung von „Wert“ enthält.

„type” kann sein:

 INT64 vorzeichenbehaftete 64-Bit-Ganzzahl, die in eine 8-Byte-
Zeichenkette umgewandelt wird

 UINT64 vorzeichenlose 64-Bit-Ganzzahl, die in eine 8-Byte-
Zeichenkette umgewandelt wurde

 INT32 Vorzeichenbehaftete 32-Bit-Ganzzahl, die in eine 4-Byte-
Zeichenkette umgewandelt wird

 UINT32 Vorzeichenlose 32-Bit-Ganzzahl, die in eine 4-Byte-
Zeichenkette umgewandelt wird

 INT16 vorzeichenbehaftete 16-Bit-Ganzzahl, die in eine 2-Byte-
Zeichenkette umgewandelt wird

 UINT16 Vorzeichenlose 16-Bit-Ganzzahl, die in eine 2-Byte-
Zeichenkette umgewandelt wird

 INT8 vorzeichenbehaftete 8-Bit-Ganzzahl, die in eine 1-Byte-
Zeichenkette umgewandelt wird

 UINT8 Vorzeichenlose 8-Bit-Ganzzahl, die in eine 1-Byte-
Zeichenkette umgewandelt wird

 EINFACHE Gleitkommazahl mit einfacher Genauigkeit, die in eine 4-Byte-
Zeichenkette umgewandelt wird

 DOUBLE Doppelt genaue Gleitkommazahl, die in eine 8-Byte-
Zeichenkette umgewandelt wird

Standardmäßig enthält die Zeichenkette die Zahl im Little-Endian-Format (d. h.

Seite212 PicoMite-Benutzerhandbuch

das niedrigstwertige Byte steht an erster Stelle in der Zeichenkette). Wenn du
den dritten Parameter auf „BIG” setzt, wird die Zeichenkette im Big-Endian-
Format zurückgegeben (d. h. das höchstwertige Byte steht an erster Stelle in der
Zeichenkette). Bei der Umwandlung von Ganzzahlen wird ein Fehler
ausgegeben, wenn der „Wert” nicht in den „Typ” passt (z. B. wenn versucht
wird, den Wert 400 in einem INT8 zu speichern).

Diese Funktion erleichtert die Vorbereitung von Daten für eine effiziente binäre
Datei-E/A oder die Vorbereitung von Zahlen für die Ausgabe an Sensoren und
das Speichern im Flash-Speicher.

Siehe auch die Funktion STR2BIN

BIT(var%, bitno) gibt den Wert eines bestimmten Bits (0-63) in einer Integer-Variablen (0 oder
1) zurück.

Siehe auch den Befehl BIT

BOUND(array() [,dimension] Gibt die Obergrenze des Arrays für die angeforderte Dimension zurück.

Die Dimension ist standardmäßig eins, wenn nichts anderes angegeben wird.
Wenn du einen Dimensionswert von 0 angibst, wird der aktuelle Wert von
OPTION BASE zurückgegeben.

Nicht verwendete Dimensionen geben den Wert Null zurück.

Beispiel:

DIM myarray(44,45)

BOUND(myarray(),2) gibt 45 zurück

BYTE(var$, byteno) Gibt den ganzzahligen Wert eines bestimmten Bytes in einer Zeichenfolge
zurück (0-255). Dies entspricht ASC(MID$(var$,byteno,1)), arbeitet jedoch
wesentlich schneller.

Schau dir auch den Befehl BYTE an

CALL(userfunname$,

[,userfunparameters,..])

Das ist eine coole Möglichkeit, benutzerdefinierte Funktionen
programmgesteuert aufzurufen. (Siehe auch den Befehl CALL). In vielen
Fällen kann damit komplexe SELECT- und IF THEN ELSEIF ENDIF-
Klauseln vermieden werden, und die Verarbeitung läuft viel schneller.

„userfunname$” kann eine beliebige Zeichenfolge, Variable oder Funktion
sein, die zum Namen einer normalen Benutzerfunktion (kein integrierter
Befehl) aufgelöst wird. „userfunparameters” sind die gleichen Parameter, die
zum direkten Aufruf der Funktion verwendet würden.

Ein typischer Anwendungsfall für diesen Befehl könnte das Schreiben einer
beliebigen Art von Emulator sein, bei dem eine von vielen Funktionen in
Abhängigkeit von einer bestimmten Variablen aufgerufen werden soll. Er bietet
auch eine Methode, um einen Funktionsnamen als Variable an eine andere
Subroutine oder Funktion zu übergeben.

CHOICE(Bedingung,
AusdruckWennWahr,
AusdruckWennFalsch)

Mit dieser Funktion kannst du einfache Entweder-oder-Auswahlen effizienter
und schneller machen als mit IF THEN ELSE ENDIF-Klauseln.

Die Bedingung ist alles, was zu einem Wert ungleich Null (wahr) oder Null
(falsch) führt.

Die Ausdrücke können alles sein, was du normalerweise einer Variablen
zuweisen oder in einem Befehl verwenden kannst, und können Ganzzahlen,
Gleitkommazahlen oder Zeichenfolgen sein.

Beispiele:
PRINT CHOICE(1, "Hallo","Tschüss") gibt "Hallo" aus
PRINT CHOICE (0, "hello","bye") gibt "Bye" aus
a=1 : b=1 : PRINT CHOICE (a=b, 4, 5) gibt 4 aus

CHR$(Zahl) Gibt eine einstellige Zeichenkette zurück, die aus dem Zeichen besteht, das

PicoMite Benutzerhandbuch Seite 213

dem durch das Argument „number” angegebenen ASCII-Code (d. h. Byte-
Wert) entspricht.

CINT(Zahl) Rundet Zahlen mit Bruchteilen auf oder ab auf die nächste ganze Zahl oder
ganze Zahl.

Zum Beispiel wird 45,47 auf 45 gerundet
45,57 wird auf 46 gerundet
-34,45 wird auf -34 gerundet
-34,55 wird auf -35 gerundet

Schau dir auch INT() und FIX() an.

COS(Zahl) Gibt den Kosinus des Arguments „Zahl” in Radianten zurück.

CWD$ Gibt das aktuelle Arbeitsverzeichnis auf dem Flash-Dateisystem oder der SD-
Karte zurück. Für das exFAT-Format nicht gültig.

Das Format ist: A:/dir1/dir2.

DATE$ Gibt das aktuelle Datum basierend auf der internen Uhr von MMBasic als
Zeichenfolge im Format „TT-MM-JJJJ“ zurück. Zum Beispiel „28-07-2012“.

Die interne Uhr/der interne Kalender verfolgt die Zeit und das Datum
einschließlich Schaltjahren. Um das Datum festzulegen, benutze den Befehl
DATE$ =.

DATETIME$(n) Gibt das Datum und die Uhrzeit zurück, die der Epoche Nummer „n”
entsprechen (Anzahl der Sekunden, die seit Mitternacht GMT am 1. Januar
1970 vergangen sind).

Das Format der zurückgegebenen Zeichenfolge ist „dd-mm-yyyy hh:mm:ss“.
Verwende den Text NOW, um die aktuelle Datums- und Zeitzeichenfolge zu
erhalten, d. h. DATETIME$(NOW)

DAY$(date$) Gibt den Wochentag für ein bestimmtes Datum als Zeichenfolge zurück.
Zum Beispiel „Montag”, „Dienstag” usw.

„date$“ ist eine Zeichenfolge, deren Format DD-MM-YY, DD-MM-YYYY
oder YYYY-MM-DD sein kann. Du kannst auch NOW verwenden, um den
Tag für das aktuelle Datum zu erhalten, z. B. PRINT DAY$(NOW)

DEG(Radiant) Rechnet „Bogenmaß” in Grad um.

DEVICE(GAMEPAD
channel, funct)

Gibt Daten von einem USB-PS3- oder PS4-Controller zurück.

„funct“ ist ein 1- oder 2-Buchstaben-Code, der die zurückzugebenden
Informationen wie folgt angibt:

LX die Position der x-Achse des analogen linken Joysticks
LY die Position der analogen linken Joystick-Y-Achse
RX die Position der x-Achse des analogen rechten Joysticks
RY die Position der analogen rechten Joystick-Y-Achse
GX der Messwert vom X-Achsen-Gyroskop (wo unterstützt)
GY der Messwert vom Y-Achsen-Gyroskop (sofern unterstützt)
GZ der Messwert vom Z-Achsen-Gyroskop (wenn unterstützt)
AX Der Messwert vom Beschleunigungsmesser der X-Achse (wenn

unterstützt)
AY der Messwert vom Y-Achsen-Beschleunigungsmesser (wenn

unterstützt)
AZ der Messwert vom Z-Achsen-Beschleunigungsmesser (wenn

verfügbar)
L die Position der analogen linken Taste
R die Position der analogen rechten Taste

Seite214 PicoMite-Benutzerhandbuch

B eine Bitmap des Status aller Tasten. Ein Bit wird auf 1 gesetzt, wenn
die Taste gedrückt wird.

T die ID-Nummer des Controllers

Die Tasten-Bitmap sieht so aus:

BIT 0 Taste R/R1
BIT 1 Taste Start/Optionen
BIT 2 Taste Home
BIT 3 Auswahl-/Teilen-Taste
BIT 4 Taste L/L1
BIT 5 Taste Cursor nach unten
BIT 6 Taste rechter Cursor
BIT 7 Taste Cursor nach oben
BIT 8 Taste links Cursor
BIT 9 Rechte Schultertaste 2/R2
BIT 10 Taste X/Dreieck
BIT 11 Taste a/Kreis
BIT 12 Taste y/Quadrat
BIT 13 Taste b/Kreuz
BIT 14 Linker Schulterknopf 2/L2
BIT 15 Touchpad

DEVICE(MOUSE channel,
funct)

Sendet Daten von einer Maus, die über den „Kanal” angeschlossen ist.

Eine PS2-Maus wird immer Kanal 2 zugewiesen. Normalerweise wird auch
eine USB-Maus Kanal 2 zugewiesen, aber das kann variieren. Weitere Infos
findest du unter MM.INFO(USB n).

„funct” ist ein einstelliger Code, der die zurückzugebenden Informationen wie
folgt angibt:

X die X-Koordinate (0 bis MM.HRES-1)

Y die Y-Koordinate (0 bis MM.VRES-1)

L der Status der linken Maustaste

R der Status der rechten Maustaste

M der Status der mittleren Maustaste (Scrollrad-Klick)

D 1, wenn die linke Maustaste doppelt geklickt wurde

W gibt die Veränderung der Radposition seit dem letzten Aufruf an (PS2-
Maus oder USB-Maus mit eingestellter OPTION MOUSE SENSITIVITY)

B Der Status aller Tasten als Bitmap (nur USB-Maus)

DEVICE(WII [CLASSIC]
funct)

Gibt Daten von einem Wii Classic Controller zurück.

„funct” ist ein 1- oder 2-Buchstaben-Code, der die zurückzugebenden
Informationen wie folgt angibt:

LX die Position der x-Achse des analogen linken Joysticks

LY die Position der analogen linken Joystick-Y-Achse

RX die Position der x-Achse des analogen rechten Joysticks

RY die Position der analogen rechten Joystick-Y-Achse

L die Position des analogen linken Knopfes

R die Position des analogen rechten Knopfes

B eine Bitmap des Status aller Tasten. Ein Bit wird auf 1 gesetzt, wenn
die Taste gedrückt wird.

T Der ID-Code des Controllers – sollte hex &HA4200101 sein

Die Tasten-Bitmap sieht so aus:

BIT 0 Taste R

PicoMite Benutzerhandbuch Seite 215

BIT 1 Taste Start

BIT 2 Taste Home

BIT 3 Auswahl-Taste

BIT 4 Taste L

BIT 5 Taste „Cursor nach unten“

BIT 6 Taste Cursor nach rechts

BIT 7 Taste Cursor nach oben

BIT 8 Taste links Cursor

BIT 9 Taste ZR

BIT 10 Taste x

BIT 11 Taste a

BIT 12 Taste y

BIT 13 Taste b

BIT 14 Taste ZL

DEVICE(NUNCHUCK-
Funktion)

Gibt Daten von einem Nunchuck-Controller zurück.

„funct” ist ein 1- oder 2-stelliger Code, der die zurückzugebenden
Informationen wie folgt angibt:

AX die Beschleunigung der x-Achse

AY die Beschleunigung auf der y-Achse

AZ die Beschleunigung auf der Z-Achse

JX die Position der X-Achse des Joysticks

JY die Position der Y-Achse des Joysticks

C der Status der C-Taste

Z der Status der Z-Taste

T der ID-Code des Controllers – sollte hex &HA4200000 sein

DIR$(fspec, type)
oder
DIR$(fspec)
oder
DIR$()

Sucht im Standard-Flash-Dateisystem oder auf der SD-Karte nach Dateien und
gibt die Namen der gefundenen Einträge zurück.

„fspec” ist eine Dateispezifikation mit Platzhaltern, die genauso wie beim
Befehl FILES verwendet werden. Zum Beispiel gibt „*.*” alle Einträge
zurück, „*.TXT” gibt Textdateien zurück. Beachte, dass der Platzhalter *.*
keine Dateien oder Ordner ohne Erweiterung findet.

„type” ist der Typ des zurückzugebenden Eintrags und kann einer der
folgenden sein:

ALL Suche nach allen Dateien und Verzeichnissen
DIR Nur nach Verzeichnissen suchen
FILE Nur nach Dateien suchen (Standard, wenn „type” nicht
angegeben ist)

Die Funktion gibt den ersten gefundenen Eintrag zurück. Um weitere Einträge
zu bekommen, benutze die Funktion ohne Argumente, also DIR$(). Wenn eine
leere Zeichenfolge zurückgegeben wird, gibt's keine weiteren Einträge mehr.

In diesem Beispiel werden alle Dateien in einem Verzeichnis angezeigt:
f$ = DIR$("*.*", FILE)
DO WHILE f$ <> ""
 PRINT f$
 f$ = DIR$()
LOOP

Du musst in das gewünschte Verzeichnis wechseln, bevor du diesen Befehl
ausführst.

DISTANCE(trigger, echo) Misst den Abstand zu einem Ziel mit dem Ultraschall-Abstandssensor HC-

Seite216 PicoMite-Benutzerhandbuch

oder

DISTANCE(trig-echo)

SR04.

Vierpolige Sensoren haben separate Trigger- und Echo-Anschlüsse. „trigger”
ist der I/O-Pin, der mit dem „trig”-Eingang des Sensors verbunden ist, und
„echo” ist der Pin, der mit dem „echo”-Ausgang des Sensors verbunden ist.

Dreipolige Sensoren haben einen kombinierten Trigger- und Echoanschluss. In
diesem Fall musst du nur einen I/O-Pin für die Schnittstelle zum Sensor
angeben.

Beachte, dass der HC-SR04 ein 5-V-Gerät ist, sodass bei Pico-Prozessoren
(RP2040) eine Pegelumsetzung erforderlich ist, bei Pico-2-Prozessoren
(RP2350) jedoch nicht.

Die I/O-Pins werden von dieser Funktion automatisch konfiguriert, und es
können mehrere Sensoren an verschiedenen I/O-Pins verwendet werden.

Der zurückgegebene Wert ist die Entfernung zum Ziel in Zentimetern oder -1,
wenn kein Ziel erkannt wurde, oder -2, wenn ein Fehler aufgetreten ist (z. B.
Sensor nicht angeschlossen).

Draw3D(arg)

NICHT IN DER WEBMITE-VERSION VERFÜGBAR

Die Funktion DRAW3D kann verwendet werden, um die Grenzen eines 3D-
Objekts zu bestimmen und einen Bereich zu definieren, der vor dem erneuten
Zeichnen gelöscht werden soll.

Eine vollständige Beschreibung findest du im Dokument
„3D_Graphics_User_Manual.pdf” im PicoMite-Firmware-Download.

EOF([#]fnbr) Gibt „true” zurück, wenn die zuvor im Flash-Dateisystem oder auf der SD-
Karte für INPUT geöffnete Datei mit der Dateinummer „#fnbr” am Ende der
Datei positioniert ist.

Das # ist optional. Sieh dir auch die Befehle OPEN, INPUT und LINE INPUT
sowie die Funktion INPUT$ an.

EPOCH(DATETIME$) Gibt die Epochenzahl (Anzahl der Sekunden, die seit Mitternacht GMT am 1.
Januar 1970 vergangen sind) für die angegebene DATETIME$-Zeichenfolge
zurück.

Das Format für DATETIME$ ist „dd-mm-yyyy hh:mm:ss“, „dd-mm-yy
hh:mm:ss“ oder „yyyy-mm-dd hh:mm:ss“. Verwende NOW, um die Epoche
für das aktuelle Datum und die aktuelle Uhrzeit zu erhalten, z. B. PRINT
EPOCH(NOW).

EVAL(string$) Wertet 'string$' wie einen BASIC-Ausdruck aus und gibt das Ergebnis zurück.

'string$' kann eine Konstante, eine Variable oder ein String-Ausdruck sein. Der
Ausdruck kann alle Operatoren, Funktionen, Variablen, Unterprogramme usw.
verwenden, die zum Zeitpunkt der Ausführung bekannt sind. Der
zurückgegebene Wert ist je nach Ergebnis der Auswertung eine Ganzzahl, eine
Gleitkommazahl oder ein String.

Beispiel: S$ = "COS(RAD(30)) * 100" : PRINT EVAL(S$)

Zeigt an: 86,6025

EXP(Zahl) Gibt den Exponentialwert von „number“ zurück, also e^x, wobei x „number“
ist.

FIELD$(string1, nbr, string2
[, string3])

Gibt ein bestimmtes Feld in einer Zeichenfolge zurück, wobei die Felder durch
Trennzeichen getrennt sind. Beachte, dass ein Leerzeichen nicht als
Trennzeichen verwendet werden kann.

„nbr” ist das zurückzugebende Feld (das erste ist nbr 1). „Zeichenfolge1” ist
die zu suchende Zeichenfolge und „Zeichenfolge2” ist eine Zeichenfolge, die
die Trennzeichen enthält (es können mehrere verwendet werden). Das
Leerzeichen darf nicht als Trennzeichen verwendet werden.

PicoMite Benutzerhandbuch Seite 217

'string3' ist optional und enthält, wenn angegeben, Zeichen, die zum Zitieren
von Text in 'string1' verwendet werden (d. h., zitierter Text wird nicht nach
einem Trennzeichen durchsucht).

Beispiel:

S$ = "foo, boo, zoo, doo"

r$ = FIELD$(s$, 2, ",")

ergibt r$ = „boo”. Während:

s$ = "foo, 'boo, zoo', doo"

r$ = FIELD$(s$, 2, ",", "'")

gibt das r$ = "boo, zoo".

FIX(Zahl) Kürzt eine Zahl auf eine ganze Zahl, indem der Dezimalpunkt und alle Zeichen
rechts davon entfernt werden.

Zum Beispiel gibt 9,89 den Wert 9 zurück und -2,11 den Wert -2.

Der Hauptunterschied zwischen FIX() und INT() besteht darin, dass FIX() eine
echte Ganzzahlfunktion bietet (d. h. gibt bei negativen Zahlen nicht wie INT()
die nächstkleinere Zahl zurück). Dieses Verhalten dient der Kompatibilität mit
Microsoft.

Siehe auch CINT().

FLAG(n%) Gibt den Wert (0 oder 1) des Bits n% (0-63) im Systemflag-Register zurück.

Siehe auch MM.FLAGS und die Befehle FLAG und FLAGS.

FORMAT$(nbr [, fmt$]) Gibt eine Zeichenfolge zurück, die „nbr“ gemäß den Angaben in der
Zeichenfolge „fmt$“ formatiert.

Die Formatangabe fängt mit einem %-Zeichen an und endet mit einem
Buchstaben. Alles, was außerhalb dieser Konstruktion ist, wird so wie es ist in
die Ausgabe kopiert.

Die Struktur einer Formatvorgabe ist:
 % [Flags] [Breite] [.Genauigkeit] Typ

Dabei kann „flags” sein:

- Den Wert innerhalb einer bestimmten Feldbreite linksbündig
ausrichten

0 Verwende 0 als Füllzeichen anstelle von Leerzeichen

+ Zwingt die Anzeige des Pluszeichens für positive Zahlen

Leerzeichen Sorgt dafür, dass bei positiven Werten ein Leerzeichen
für das Vorzeichen angezeigt wird. Negative Werte zeigen
weiterhin das – Zeichen.

„width” ist die Mindestanzahl der auszugebenden Zeichen. Bei weniger
Zeichen wird die Zahl aufgefüllt, bei mehr Zeichen wird die Breite erweitert.

„precision“ gibt die Anzahl der zu generierenden Dezimalstellen mit einem e-
oder f-Typ oder die maximale Anzahl der zu generierenden signifikanten
Stellen mit einem g-Typ an und ist standardmäßig auf 4 Stellen eingestellt.
Wenn angegeben, muss der Genauigkeit ein Punkt (.) vorangestellt werden.

„type“ kann einer der folgenden Werte sein:

g Formatiert die Zahl automatisch für die beste Darstellung.

f Formatiert die Zahl mit dem Dezimalpunkt und den folgenden
Stellen.

e Formatiere die Zahl im Exponentialformat.

Wenn Großbuchstaben G oder F verwendet werden, wird für die exponentielle
Ausgabe ein Großbuchstabe E verwendet. Wenn die Formatangabe nicht
angegeben ist, wird „%g“ angenommen.

Seite218 PicoMite-Benutzerhandbuch

Beispiele: format$(45) gibt 45 zurück
format$(45, „%g”) gibt 45 zurück

GETSCANLINE

NUR VGA- UND HDMI-VERSIONEN

Das zeigt die Zeile an, die gerade auf dem VGA/HDMI-Monitor im Bereich
von 0 bis 525 gezeichnet wird. Das ist unabhängig vom aktuellen MODUS.

Wenn du das nutzt, um Updates auf dem Bildschirm zu timen, kannst du
Timing-Effekte vermeiden, die durch Updates entstehen, während der
Bildschirm aktualisiert wird.

Die erste sichtbare Zeile gibt den Wert 0 zurück. Alle Zeilennummern über 479
liegen im Bildausblendungszeitraum.

GPS() Die GPS-Funktion gibt Daten von einem seriellen Kommunikationskanal
zurück, der mit den Befehlen OPEN GPS oder OPTION GPS als GPS geöffnet
wurde.

Diese Funktion wird ausführlich in der Datei Option_GPS_User_Manual.pdf
beschrieben, die im ZIP-Archiv zum Herunterladen der Firmware enthalten ist.

Die Funktion GPS(VALID) sollte vor dem Zugriff auf die Daten überprüft
werden, um sicherzustellen, dass der zurückgegebene Wert gültig ist.

HEX$(Zahl [, Zeichen]) Gibt eine Zeichenfolge zurück, die den Hexadezimalwert (Basis 16) für die
„Zahl” angibt.

„Zeichen” ist optional und gibt die Anzahl der Zeichen in der Zeichenfolge an,
wobei Null als führendes Auffüllzeichen verwendet wird.

INKEY Überprüft den Eingabepuffer der Konsole und entfernt, wenn ein oder mehrere
Zeichen in der Warteschlange stehen, das erste Zeichen und gibt es als
einzelnes Zeichen in einer Zeichenfolge zurück.

Wenn der Eingabepuffer leer ist, gibt diese Funktion sofort eine leere
Zeichenkette (d. h. „“) zurück.

INPUT$(nbr, [#]fnbr) Gibt eine Zeichenkette zurück, die aus „nbr“ Zeichen besteht, die aus einer
Datei oder einem seriellen Kommunikationsport gelesen wurden, der als „fnbr“
geöffnet ist. Diese Funktion gibt so viele Zeichen zurück, wie in der Datei oder
im Empfangspuffer bis zu „nbr“ vorhanden sind. Wenn keine Zeichen
verfügbar sind, wird sofort eine leere Zeichenkette zurückgegeben.

#0 kann verwendet werden, um auf den Eingabepuffer der Konsole zu
verweisen.

Das # ist optional. Sieh dir auch den Befehl OPEN an.

INSTR([Startposition,]
gesuchter-String$, String-
Muster$ [,Größe])

Gibt die Position zurück, an der „string-pattern$” in „string-searched$”
vorkommt, beginnend bei „start-position”. Wenn „start-position” nicht
angegeben wird, wird standardmäßig 1 verwendet.

Sowohl die zurückgegebene Position als auch „start-position” verwenden 1 für
das erste Zeichen, 2 für das zweite usw.

Die Funktion gibt Null zurück, wenn 'string-pattern$' nicht gefunden wird.

Wenn der optionale Parameter „size” angegeben wird, wird „string-pattern”
wie ein regulärer Ausdruck behandelt. Details dazu findest du in Anhang E.

INT(Zahl) Kürzt einen Ausdruck auf die nächste ganze Zahl, die kleiner oder gleich dem
Argument ist. Beispielsweise gibt 9,89 den Wert 9 und -2,11 den Wert -3
zurück.

Dieses Verhalten dient der Kompatibilität mit Microsoft. Die Funktion FIX()
bietet eine echte Ganzzahlfunktion. Siehe auch CINT().

PicoMite Benutzerhandbuch Seite 219

JSON$(array%(), string$) Gibt eine Zeichenfolge zurück, die ein bestimmtes Element aus der JSON-
Eingabe darstellt, die im Longstring-Array %() gespeichert ist. Beachte, dass
viele JSON-Datensätze ziemlich groß sind und möglicherweise zu groß sind,
um mit dem verfügbaren Speicherplatz analysiert zu werden.

Beispiele (aus api.openweathermap.org):

JSON$(a%(), „name”)

JSON$(a%(), „coord.lat”)

JSON$(a%(), „weather[0].description”)

JSON$(a%(),”list[4].weather[0].description

KEYDOWN(n) Gibt den dezimalen ASCII-Wert der gerade gedrückten Taste der USB-Tastatur
zurück oder Null, wenn keine Taste gedrückt ist. Die Dezimalwerte für die
Funktions- und Pfeiltasten findest du in Anhang I.

Diese Funktion meldet mehrere gleichzeitig gedrückte Tasten, wobei der
Parameter „n” die Nummer der zu meldenden Tastenbetätigung ist.
KEYDOWN(0) gibt die Anzahl der gedrückten Tasten zurück.

Wenn zum Beispiel „c”, „g” und „p” gleichzeitig gedrückt werden, gibt
KEYDOWN(0) 3 zurück, KEYDOWN(1) gibt 99 zurück, KEYDOWN(2) gibt
103 zurück usw. Die Tasten müssen nicht gleichzeitig gedrückt werden und
werden in der Reihenfolge gemeldet, in der sie gedrückt wurden. Wenn man
einen Finger von einer Taste nimmt, wird die nächste gedrückte Taste zu #1.

Die erste Taste („n“ = 1) wird in den Tastaturpuffer eingegeben (zugänglich
über INKEY$), während auf die Tasten 2 bis 6 nur über diese Funktion
zugegriffen werden kann. Durch die Verwendung dieser Funktion wird der
Konsoleneingabepuffer gelöscht.

KEYDOWN(7) gibt alle gedrückten Modifikatortasten zurück. Diese Tasten
werden nicht zur Zählung in keydown(0) hinzugefügt.

Der Rückgabewert ist eine Bitmaske wie folgt:

lalt = 1, lctrl = 2, lgui = 4, lshift = 8, ralt = 16, rctrl = 32, rgui = 64, rshift = 128

KEYDOWN(8) gibt den aktuellen Status der Sperrtasten zurück. Diese Tasten
werden nicht zur Zählung in keydown(0) hinzugefügt.

Der Rückgabewert ist eine Bitmaske wie folgt:

caps_lock = 1, num_lock = 2, scroll_lock = 4

Beachte, dass manche Tastaturen die Anzahl der aktiven Tasten, die sie melden
können, begrenzen.

LCASE$(string$) Gibt „string$” in Kleinbuchstaben zurück.

LCOMPARE(array1%(),
array2%())

Vergleiche den Inhalt von zwei langen String-Variablen „array1%()” und
„array2%()”. Die Rückgabe ist eine ganze Zahl und ist -1, wenn „array1%()”
kleiner als „array2%()” ist. Sie ist Null, wenn sie in Länge und Inhalt gleich
sind, und +1, wenn „array1%()” größer als „array2%()” ist. Der Vergleich nutzt
den ASCII-Zeichensatz und unterscheidet zwischen Groß- und
Kleinschreibung.

LEFT$(string$, nbr) Gibt eine Teilzeichenfolge von „string$“ mit „nbr“ Zeichen vom Anfang der
Zeichenfolge zurück.

LEN(string$) Gibt die Anzahl der Zeichen in 'string$' zurück.

LGETBYTE(array%(), n) Gibt den numerischen Wert des n-ten Bytes in der LONGSTRING zurück, die
in „array%()” gespeichert ist. Diese Funktion berücksichtigt die Einstellung
von OPTION BASE bei der Bestimmung des zurückzugebenden Bytes.

Seite220 PicoMite-Benutzerhandbuch

LGETSTR$(array%(), start,
length)

Gibt einen Teil einer langen Zeichenfolge zurück, die in „array%()” als
normale MMBasic-Zeichenfolge gespeichert ist. Die Parameter start und length
legen fest, welcher Teil der Zeichenfolge zurückgegeben wird.

LINSTR(array%(), search$
[,start] [,size]))

Gibt die Position einer Suchzeichenfolge in einer langen Zeichenfolge zurück.

Der zurückgegebene Wert ist eine ganze Zahl und ist Null, wenn die
Teilzeichenfolge nicht gefunden werden kann. „array%()” ist die zu
durchsuchende Zeichenfolge und muss eine lange Zeichenfolgenvariable sein.
„search$” ist die zu suchende Teilzeichenfolge und muss eine normale
MMBasic-Zeichenfolge oder ein Ausdruck sein (keine lange Zeichenfolge).
Bei der Suche wird zwischen Groß- und Kleinschreibung unterschieden.

Normalerweise fängt die Suche beim ersten Zeichen in 'array%()' an, aber mit
dem optionalen dritten Parameter kann man die Startposition der Suche
festlegen.

Wenn der optionale Parameter „size“ angegeben wird, wird „search$“ wie ein
regulärer Ausdruck behandelt. Details dazu findest du in Anhang E.

LLEN(array%()) Gibt die Länge einer langen Zeichenfolge zurück, die in „array%()” gespeichert
ist.

LINPUT(array%(),fnbr,nbr) Liest „nbr“ Bytes aus einer als „fnbr“ geöffneten Datei in die LONGSTRING
„array%()“.
Die Funktion gibt die Anzahl der tatsächlich gelesenen Bytes zurück. Wenn du
dich also am Ende der Datei befindest, kann die Anzahl kleiner sein als die
angeforderte.
Ende der Datei bist, kann die Zahl kleiner sein als die angeforderte.
Das funktioniert nur mit Datei-E/A und nicht mit serieller oder Konsolen-E/A.

LOC([#]fnbr) Für eine Datei im Flash-Dateisystem oder auf einer SD-Karte, die als „fnbr”
geöffnet ist, gibt das die aktuelle Position des Lese-/Schreibzeigers in der Datei
zurück. Beachte, dass das erste Byte in einer Datei die Nummer 1 hat.

Für einen seriellen Kommunikationsport, der als „fnbr” geöffnet ist, gibt diese
Funktion die Anzahl der empfangenen Bytes zurück, die im Empfangspuffer
zum Lesen bereitstehen. #0 kann verwendet werden und bezieht sich auf den
Eingabepuffer der Konsole.

Das # ist optional.

LOF([#]fnbr) Für eine Datei auf dem Flash-Dateisystem oder der SD-Karte, die als „fnbr”
geöffnet ist, gibt das die aktuelle Länge der Datei in Bytes zurück.

Für einen als „fnbr” geöffneten seriellen Kommunikationsport gibt diese
Funktion den im Sendepuffer verbleibenden Platz (in Zeichen) zurück.
Beachte, dass MMBasic bei vollem Puffer beim Hinzufügen eines neuen
Zeichens pausiert und wartet, bis Platz verfügbar wird. Diese Funktion kann
verwendet werden, um dies zu vermeiden.

Das # ist optional.

LOG(Zahl) Gibt den natürlichen Logarithmus des Arguments „number” zurück.

PicoMite Benutzerhandbuch Seite 221

MAP(n)

NUR FÜR HDMI-, VGA- UND PICOMITE RP2350-PUFFERTreiber

Gibt den 24-Bit-RGB-Wert für den Index „n” in der Farbtabelle zurück.

Siehe den Befehl MAP. Damit kann der Basic-Programmierer eine durch den
Befehl MAP festgelegte Farbe verwenden.

z. B.

MAP(8) = RGB(100,100,100)

MAP SET

Pixel x,y,map(8)

Hinweis: Bei VGA werden alle mit dem Befehl „map“ festgelegten Farben in
die nächstgelegene RGB121-Farbe umgewandelt, die durch das VGA-
Widerstandsnetzwerk bestimmt wird. Bei HDMI-Bildschirmen werden die
Farben in die nächstgelegene RGB555-Farbe (Auflösung 640 x 480) oder
RGB332-Farbe (Auflösung 1024 x 768 oder 1280 x 720) umgewandelt. Bei
PIcoMite RP2350-gepufferten Treibern werden die Farben in die
nächstgelegene RGB332-Farbe umgewandelt.

MATH

Einfache Funktionen

MATH(ATAN3 x,y)

MATH(COSH a)

MATH(LOG10 a)

MATH(SINH a)

MATH(TANH a)

MATH(CRCn Daten [,Länge]

[,Polynom] [,Startmaske]

[,endmask] [,reverseIn]

[,reverseOut]

MATH(RAND)

Einfache Statistik

MATH(CHI a())

MATH(CHI_p a())

Die mathematische Funktion macht viele einfache Berechnungen, die man in
Basic programmieren kann, aber es ist schneller, Schleifenstrukturen in C zu
programmieren, und es ist auch gut, dass sie nach dem Debuggen für alle da
sind, ohne dass man das Rad neu erfinden muss.

Gibt ATAN3 von x und y zurück

Gibt den hyperbolischen Kosinus von a zurück

Gibt den Logarithmus zur Basis 10 von a zurück

Gibt den hyperbolischen Sinus von a zurück

Gibt den hyperbolischen Tangens von a zurück

Berechnet den CRC auf n Bits (8, 12, 16, 32) von „data“. „data“ kann ein
ganzzahliges oder ein Gleitkomma-Array oder eine String-Variable sein.
„Length“ ist optional und wenn es nicht angegeben wird, wird die Größe des
Arrays oder die String-Länge verwendet. Die Standardwerte für startmask,
endmask reverseIn und reversOut sind alle Null. reverseIn und reversOut sind
beide Boolesche Werte und nehmen den Wert 1 oder 0 an. Die Standardwerte
für polynomes sind CRC8=&H07, CRC12=&H80D, CRC16=&H1021,
crc32=&H04C11DB7

Beispiel: Für crc16_CCITT verwenden Sie MATH(CRC16 array(), n,,
&HFFFF)

Gibt eine Zufallszahl 0,0 <= n < 1,0 unter Verwendung des „Mersenne-
Twister-Algorithmus” zurück. Wenn nicht mit MATH RANDOMIZE
initialisiert, wird bei der ersten Verwendung die Zeit in Mikrosekunden seit
dem Start als Startwert verwendet. Hinweis: Der RP2350 enthält einen H/W-
Zufallszahlengenerator.

Seite222 PicoMite-Benutzerhandbuch

MATH(CROSSING array()
[,level] [,direction]

MATH(CORREL a(), a())

MATH(MAX a() [,index%])

MATH(MEAN a())

MATH(MEDIAN a())

MATH(MIN a(), [index%])

MATH(SD a())

MATH(SUM a())

Vektorarithmetik

MATH(MAGNITUDE v())

MATH(DOTPRODUCT v1(),
v2())

Matrix-Arithmetik

MATH(M_DETERMINANT
array!())

Gibt den Pearson-Chi-Quadrat-Wert des zweidimensionalen Arrays a()) zurück.

Gibt die zugehörige Wahrscheinlichkeit in % des Pearson-Chi-Quadrat-Werts
des zweidimensionalen Arrays a()) zurück.

Gibt den Array-Index zurück, bei dem die Werte im Array den „Level” in der
angegebenen Richtung überschreiten. Der Standardwert für „level” ist 0. Der
Standardwert für „direction” ist 1 (gültige Werte sind -1 oder 1).

Gibt den Pearson-Korrelationskoeffizienten zwischen den Arrays a() und b()
zurück.

Gibt das Maximum aller Werte im Array a() zurück, wobei a() beliebig viele
Dimensionen haben kann. Wenn die Ganzzahlvariable angegeben ist, wird sie
mit dem Index des Maximalwerts im Array aktualisiert. Dies ist nur für
eindimensionale Arrays verfügbar.

Gibt den Durchschnitt aller Werte im Array a() zurück, wobei a() beliebig viele
Dimensionen haben kann.

Gibt den Median aller Werte im Array a() zurück, wobei a() beliebig viele
Dimensionen haben kann

Gibt den kleinsten Wert aller Werte im Array a() zurück, wobei a() beliebig
viele Dimensionen haben kann. Wenn die Ganzzahlvariable angegeben ist,
wird sie mit dem Index des kleinsten Werts im Array aktualisiert. Dies ist nur
bei eindimensionalen Arrays verfügbar.

Gibt die Standardabweichung aller Werte im Array a() zurück, wobei a()
beliebig viele Dimensionen haben kann.

Gibt die Summe aller Werte im Array a() zurück, wobei a() beliebig viele
Dimensionen haben kann.

Gibt die Größe des Vektors v() zurück. Der Vektor kann beliebig viele
Elemente haben.

Gibt das Skalarprodukt der beiden Vektoren v1() und v2() zurück. Die
Vektoren können beliebig viele Elemente haben, müssen aber die gleiche
Kardinalität haben.

Gibt die Determinante des Arrays zurück. Das Array muss quadratisch sein.

PicoMite Benutzerhandbuch Seite 223

Erstellung

complex% = MATH(C_CPLX r!, i!)

complex% = MATH(C_POLAR radius!, angle!)

Gleitkommazahlen

real! = MATH(C_REAL complex%)
imag! = MATH(C_IMAG complex%)
arg! = MATH(C_ARG complex%)

mod! = MATH(C_MOD komplex%)
phase! = MATH(C_PHASE complex%)

Unäre Funktionen

complex1% = MATH(C_CONJ complex2%)
complex1% = MATH(C_SIN complex2%)
complex1% = MATH(C_COS complex2%)
complex1% = MATH(C_TAN complex2%)
complex1% = MATH(C_ASIN complex2%)
komplex1% = MATH(C_ACOS komplex2%)
komplex1% = MATH(C_ATAN komplex2%)
komplex1% = MATH(C_SINH komplex2%)
komplex1% = MATH(C_COSH komplex2%)
komplex1% = MATH(C_TANH komplex2%)
komplex1% = MATH(C_ASINH komplex2%)
komplex1% = MATH(C_ACOSH komplex2%)
komplex1% = MATH(C_ATANH komplex2%)
komplex1% = MATH(C_PROJ komplex2%)

Grundlegende Arithmetik

komplex1% = MATH(C_ADD komplex2%,komplex3%)
komplex1% = MATH(C_SUB komplex2%,komplex3%)
complex1% = MATH(C_MUL complex2%,complex3%)
komplex1% = MATH(C_DIV komplex2%,komplex3%)
komplex1% = MATH(C_POW komplex2%,komplex3%)
komplex1% = MATH(C_AND komplex2%,komplex3%)
komplex1% = MATH(C_OR komplex2%,komplex3%)
komplex1% = MATH(C_XOR komplex2%,komplex3%)

MMBasic hat alle Funktionen, die du brauchst,
um mit komplexen Zahlen rumzuspielen. In
dieser Version haben komplexe Zahlen einen 32-
Bit-Realteil und einen 32-Bit-Imaginärteil. Damit
das in MMBasic klappt, werden dafür
Ganzzahlen (64 Bit) benutzt.

MATH(PID-Kanal, Sollwert!,
Messwert))

Diese Funktion muss in der PID-Callback-Subroutine für den angegebenen
„Kanal” aufgerufen werden und gibt die Ausgabe der Reglerfunktion zurück.

Der Wert „setpoint” ist der gewünschte Zustand, den der Regler erreichen will.
„measurement” ist der aktuelle Wert in der realen Welt.

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263

Ein Beispiel für die Einrichtung und den Betrieb eines PID-Reglers

MATH(BASE64
ENCODE/DECODE in$/in(),
out$/out())

Gibt die Länge von out$/out() zurück. Diese Base64-Kodierung oder -
Dekodierung kodiert oder dekodiert die Daten in „in” und speichert das
Ergebnis in „out”. Wenn Arrays als Ausgabe verwendet werden, müssen sie im
Verhältnis zur Eingabe und zur Richtung groß genug sein. Die Verschlüsselung
erhöht die Länge um 4/3 und die Entschlüsselung verringert sie um 3/4.

MAX(arg1 [, arg2 [, …]])

oder

MIN(arg1 [, arg2 [, …]])

Gibt die größte oder kleinste Zahl in der Argumentliste zurück.

Beachte, dass der Vergleich ein Fließkomma-Vergleich ist (ganzzahlige
Argumente werden in Fließkommazahlen umgewandelt) und eine
Fließkommazahl zurückgegeben wird.

Seite224 PicoMite-Benutzerhandbuch

https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=17263

MID$(string$, start)

oder

MID$(string$, start, nbr)

Gibt eine Teilzeichenfolge von „string$“ zurück, die bei „start“ beginnt und
sich über „nbr“ Zeichen erstreckt. Das erste Zeichen in der Zeichenfolge ist die
Zahl 1.

Wenn „nbr” weggelassen wird, geht die zurückgegebene Zeichenkette bis zum
Ende von „string$”.

OCT$(number [, chars]) Gibt eine Zeichenkette zurück, die die oktale (Basis 8) Darstellung von
„number“ angibt.

„Zeichen” ist optional und gibt an, wie viele Zeichen die Zeichenkette hat,
wobei führende Zeichen durch Nullen aufgefüllt werden.

PEEK(BYTE addr%)

oder

PEEK(SHORT addr%)

oder

PEEK(WORD addr%)

oder

PEEK(INTEGER addr%)

oder

PEEK(FLOAT addr%)

oder

PEEK(VARADDR var)

oder

PEEK(VARHEADER var)

oder

PEEK(CFUNADDR cfun)
oder

PEEK(VAR var, ±offset)

oder

PEEK(VARTBL, ±Offset)

oder

PEEK(PROGMEM, ±Offset)

PEEK(BP n%)

PEEK(SP n%)

PEEK(WP n%)

Hinweis: Adressen werden abgerundet, um dem angeforderten Datentyp zu
entsprechen (z. B. PEEK(SHORT) oder es kommt zu einem Fehler, wenn sie
nicht ausgerichtet sind, z. B. PEEK(SP

Gibt ein Byte oder ein Wort innerhalb des virtuellen Speicherbereichs des
Prozessors zurück.

BYTE gibt das Byte (8 Bit) zurück, das sich an „addr%” befindet.

SHORT gibt die kurze Ganzzahl (16 Bit) an der Adresse „addr%” zurück

WORD gibt das Wort (32 Bit) zurück, das sich an „addr%” befindet

INTEGER gibt die Ganzzahl (64 Bit) an der Adresse „addr%“ zurück.

FLOAT gibt die Gleitkommazahl (64 Bit) an der Adresse „addr%“ zurück.

VARADDR gibt die Adresse (32 Bit) der Variablen „var” im Speicher zurück.
Ein Array wird als var() angegeben.

VARHEADER gibt die Adresse (32 Bit) des Headers der Variablen „var” im
Speicher zurück. Ein Array wird als var() angegeben. Dies ist die Adresse des
ersten Bytes des Variablennamens.

CFUNADDR gibt die Adresse (32 Bit) der CFunktion „cfun” im Speicher
zurück. Diese Adresse kann an eine andere CFunktion übergeben werden, die
sie dann aufrufen kann, um einen gemeinsamen Prozess auszuführen.

VAR gibt ein Byte im Speicher zurück, das 'var' zugewiesen ist. Ein Array wird
als var() angegeben.

VARTBL gibt ein Byte im Speicher zurück, das der von MMBasic verwalteten
Variablentabelle zugewiesen ist. Beachte, dass nach dem Schlüsselwort
VARTBL ein Komma steht.

PROGMEM gibt ein Byte im Speicher zurück, das dem Programm zugewiesen
ist. Beachte, dass nach dem Schlüsselwort PROGMEM ein Komma steht.

Beachte, dass „addr%” eine ganze Zahl sein sollte.

PEEK(bp n%) ' gibt das Byte an der Adresse n% zurück und erhöht n%, um auf
das nächste Byte zu zeigen.

PEEK(sp n%) gibt das Short an der Adresse n% zurück und erhöht n%, um auf
das nächste Short zu zeigen.

PEEK(wp n%) gibt das Wort an der Adresse n% zurück und erhöht n%, um auf
das nächste Wort zu zeigen.

PI Gibt den Wert von Pi zurück.

PicoMite Benutzerhandbuch Seite 225

PIN (Pin) Gibt den Wert am externen E/A-Pin zurück. Null heißt digital niedrig, 1 heißt
digital hoch, und bei analogen Eingängen wird die gemessene Spannung als
Fließkommazahl zurückgegeben.

Frequenzeingänge geben die Frequenz in Hz zurück. Ein Periodeneingang gibt
die Periode in Millisekunden zurück, während ein Zähleingang die Anzahl seit
dem Zurücksetzen zurückgibt (die Zählung erfolgt an der positiven Flanke).
Der Zähleingang kann durch Zurücksetzen des Pins auf Zähleingang auf Null
zurückgesetzt werden (auch wenn er bereits so konfiguriert ist).

Wenn ein Pin als Ausgang konfiguriert ist, gibt diese Funktion den Wert der
Ausgangseinstellung zurück (d. h. hoch oder niedrig). Siehe auch die Befehle
SETPIN und PIN() =. Eine allgemeine Beschreibung der
Ein-/Ausgabefunktionen des PicoMite findest du im Kapitel „Verwendung der
E/A-Pins“.

PIN(BOOTSEL) Gibt den Status des Boot-Auswahlschalters zurück, sodass er als
Benutzereingabe in einem Programm verwendet werden kann.

PIN(TEMP) Gibt die Temperatur des RP2040/RP2350-Chips zurück (Details findest du im
Datenblatt).

PIO(DMA RX POINTER)

PIO(DMA TX POINTER)

PIO (SHIFTCTRL
push_threshold
[,pull_threshold] [,autopush]
[,autopull] [,in_shiftdir]
[,out_shiftdir] [,fjoin_tx]
[,fjoin_rx])

Gibt das aktuelle Datenelement zurück, das gerade vom PIO geschrieben oder
gelesen wird.

Hilfsfunktion zur Berechnung des Werts von shiftctrl für den Befehl INIT
MACHINE.

PIO (PINCTRL
no_side_set_pins
[,no_set_pins] [,no_out_pins]
[,IN base]

 [,side_set_base] [,set_base][,
out_base])

Hilfsfunktion zur Berechnung des Werts von pinctrl für den Befehl INIT
MACHINE. Hinweis: Die Pin-Parameter müssen im Format GPn angegeben
werden.

PIO (EXECCTRL
jmp_pin ,wrap_target, wrap
[,side_pindir] [,side_en])

Hilfsfunktion zur Berechnung des Werts von execctrl für den Befehl INIT
MACHINE

PIO(READFIFO a, b, c) Aus einem PIO-FIFO lesen

„a” ist der pio (0 oder 1), „b” ist die Zustandsmaschine (0...3), „c” ist das FIFO-
Register *0…3)

PIO (FDEBUG pio) Gibt den Wert des FSDEBUG-Registers für den angegebenen pio zurück

PIO (FSTAT pio) gibt den Wert des FSTAT-Registers für den angegebenen PIO zurück

Seite226 PicoMite-Benutzerhandbuch

PIO (FLEVEL pio)

PIO(FLEVEL pio ,sm, DIR)

PIO(.WRAP)

PIO(.WRAP TARGET)

PIO(NEXT LINE)

gibt den Wert des FLEVEL-Registers für das angegebene pio zurück

PIO(FLEVEL pio)

dir kann RX oder TX sein. Gibt den Pegel des bestimmten FIFO zurück

Gibt die Position der .wrap-Direktive in PIO ASSEMBLE zurück

Gibt die Position der .wrap-Zielanweisung in PIO ASSEMBLE zurück.

Diese können in der Funktion PIO(EXECCTRL wie folgt verwendet werden:

PIO (EXECCTRL jmp_pin PIO(.WRAP TARGET), PIO(.WRAP)
[,side_pindir] [,side_en])

Gibt den nächsten ungenutzten PIO-Befehlsslot nach einem mit END
PROGRAM beendeten PIO-Befehlsblock zurück.

PIXEL(x, y) Gibt die Farbe eines Pixels auf dem Videoausgang oder dem LCD-Display
zurück. „x” ist die horizontale Koordinate und „y” die vertikale Koordinate des
Pixels.

Wenn ein LCD-Display verwendet wird, muss es einen der Controller
SSD1963, ILI9341, ILI9488 oder ST7789_320 verwenden.

PORT(start, nbr [,start, nbr]
…)

Gibt den Wert einer Reihe von E/A-Pins in einem Vorgang zurück.

„start“ ist eine I/O-Pin-Nummer und ihr Wert wird als Bit 0 zurückgegeben.
„start“+1 wird als Bit 1 zurückgegeben, „start“+2 als Bit 2 und so weiter für die
Anzahl der Bits „nbr“. Die verwendeten E/A-Pins müssen fortlaufend
nummeriert sein, und jeder E/A-Pin, der ungültig oder nicht als Eingang
konfiguriert ist, führt zu einem Fehler. Das Start-/Anzahl-Paar kann bis zu 25
Mal wiederholt werden, wenn zusätzliche Gruppen von Eingangspins
hinzugefügt werden müssen.

Diese Funktion gibt auch den Ausgangsstatus eines als Ausgang konfigurierten
Pins zurück.

Dies kann zur bequemen Kommunikation mit parallelen Geräten wie
Speicherchips verwendet werden. Es kann eine beliebige Anzahl von E/A-Pins
(und damit Bits) von 1 bis zur Anzahl der E/A-Pins auf dem Chip verwendet
werden.

Hinweis: Wenn die Pins mit der GPn-Syntax definiert sind, ignoriert die
Firmware ungültige Pins, sodass PORT(GP0, 8) acht I/O-Pins liest: GP0,
GP1, GP2, GP3, GP4, GP5, GP6 und GP7.

Siehe den Befehl PORT, um gleichzeitig an mehrere Pins auszugeben.

PULSIN(Pin, Polarität)

oder

PULSIN(Pin, Polarität, t1)

oder

PULSIN(Pin, Polarität, t1,
t2)

Misst die Breite eines Eingangsimpulses von 1 µs bis 1 Sekunde mit einer
Auflösung von 0,1 µs.

„Pin” ist der für die Messung zu verwendende E/A-Pin, der zuvor als digitaler
Eingang konfiguriert werden muss. „Polarität” ist der zu messende Impulstyp.
Ist der Wert Null, gibt die Funktion die Breite des nächsten negativen Impulses
zurück, ist er ungleich Null, wird der nächste positive Impuls gemessen.

„t1” ist die Zeitüberschreitung, die beim Warten auf den Impuls angewendet
wird, „t2” ist die Zeitüberschreitung, die beim Messen des Impulses verwendet
wird. Beide sind in Mikrosekunden (µs) angegeben und optional. Wenn „t2“
weggelassen wird, wird der Wert von „t1“ für beide Zeitüberschreitungen
verwendet. Wenn sowohl „t1“ als auch „t2“ weggelassen werden, werden die
Zeitüberschreitungen auf 100000 (d. h. 100 ms) gesetzt.

Diese Funktion gibt die Breite des Impulses in Mikrosekunden (µs) zurück oder
-1, wenn eine Zeitüberschreitung aufgetreten ist. Die Messung ist auf ±0,5 %
und ±0,5 µs genau.

PicoMite Benutzerhandbuch Seite 227

Beachte, dass diese Funktion das laufende Programm während der Messung
pausiert und Interrupts während dieser Zeit ignoriert werden.

RAD(Grad) Rechnet „Grad” in Bogenmaß um.

RGB (Rot, Grün, Blau)

oder

RGB(Shortcut)

Macht einen echten RGB-Farbwert.

„Rot”, „Blau” und „Grün” zeigen die Intensität jeder Farbe an. Der Wert Null
steht für Schwarz und 255 für volle Intensität.

Mit „Abkürzung” kannst du gängige Farben durch ihre Bezeichnung angeben.
Die Farben, die du benennen kannst, sind Weiß, Schwarz, Blau, Grün, Cyan,
Rot, Magenta, Gelb, Braun, Weiß, Orange, Rosa, Gold, Lachs, Beige, Hellgrau
und Grau (oder die US-amerikanische Schreibweise Gray/Lightgray). Zum
Beispiel RGB(rot) oder RGB(cyan).

RIGHT$(string$, Anzahl-der-
Zeichen)

Gibt eine Teilzeichenfolge von „string$“ mit „number-of-chars“ Zeichen von
rechts (Ende) der Zeichenfolge zurück.

RND(Zahl)

oder

RND

Gibt eine Zufallszahl (RP2350) oder Pseudozufallszahl (RP2040) im Bereich
von 0 bis 0,999999 zurück. Der Wert „number” wird ignoriert, wenn er
angegeben wird.

Schau dir auch den Befehl RANDOMIZE an (nur RP2040).

SGN(Zahl) Gibt das Vorzeichen des Arguments „number” zurück: +1 für positive Zahlen,
0 für 0 und -1 für negative Zahlen.

SIN(Zahl) Gibt den Sinus des Arguments „number” in Radianten zurück.

SPACE$(Zahl) Gibt eine Zeichenfolge mit Leerzeichen zurück, die „Zahl“ Zeichen lang ist.

SPI (data)

oder

SPI2 (data)

Sendet und empfängt Daten über einen SPI-Kanal.

Bei einer einzelnen SPI-Transaktion werden Daten gesendet und gleichzeitig
Daten vom Slave empfangen. „data” sind die zu sendenden Daten, und die
Funktion gibt die während der Transaktion empfangenen Daten zurück. „data”
können eine Ganzzahl, eine Gleitkommavariable oder eine Konstante sein.

SPRITE()

NUR VGA- UND HDMI-VERSIONEN

Die SPRITE-Funktionen geben Infos zu Sprites zurück, das sind kleine
Grafiken auf dem VGA/HDMI-Bildschirm. Die sind nützlich, wenn du Spiele
programmierst. Sieh dir auch die SPRITE-Befehle an.

SPRITE(C, [#]n) Gibt die Anzahl der aktuell aktiven Kollisionen für Sprite n zurück. Wenn n=0
ist, gibt es die Anzahl der Sprites zurück, die nach einem SPRITE SCROLL-
Befehl eine aktuell aktive Kollision haben.

SPRITE(C, [#]n, m) Gibt die Nummer des Sprites zurück, das die m-te Kollision von Sprite n
verursacht hat. Wenn n=0 ist, gibt es die Sprite-Nummer des m-ten Sprites
zurück, das nach einem SPRITE SCROLL-Befehl eine aktive Kollision hat.

Wenn die Kollision mit dem Rand des Bildschirms passiert ist, ist der
Rückgabewert:

&HF1 Kollision mit der linken Bildschirmseite

&HF2 Kollision mit dem oberen Bildschirmrand

&HF4 Kollision mit der rechten Seite des Bildschirms

&HF8 Kollision mit dem unteren Bildschirmrand

Seite228 PicoMite-Benutzerhandbuch

SPRITE(D ,[#]s1, [#]s2)

SPRITE(E, [#]n)

SPRITE(H,[#]n)

Gibt den Abstand zwischen den Mittelpunkten der Sprites „s1” und „s2” zurück
(gibt -1 zurück, wenn eines der Sprites nicht aktiv ist).

Gibt eine Bitmap zurück, die alle Kanten des Bildschirms anzeigt, mit denen
das Sprite in Kontakt ist: 1 = linke Bildschirmseite, 2 = obere Bildschirmseite,
4 = rechte Bildschirmseite, 8 = untere Bildschirmseite

Gibt die Höhe von Sprite n zurück. Diese Funktion ist aktiv, egal ob das Sprite
gerade angezeigt wird (aktiv) oder nicht.

SPRITE(L, [#]n) Gibt die Layernummer des aktiven Sprites Nummer n zurück.

SPRITE(N) Gibt die Anzahl der angezeigten (aktiven) Sprites zurück.

SPRITE(N,n) Zeigt die Anzahl der Sprites an, die auf Ebene n angezeigt werden.

SPRITE(S) Gibt die Nummer des Sprites zurück, das zuletzt eine Kollision verursacht hat.
Hinweis: Wenn die zurückgegebene Nummer Null ist, dann ist die Kollision
das Ergebnis eines SPRITE SCROLL-Befehls und die Funktion SPRITE(C…)
sollte verwendet werden, um herauszufinden, wie viele und welche Sprites
kollidiert sind.

SPRITE(T, [#]n)

SPRITE(V,[#]s1, [#]s2)

SPRITE(W, [#]n)

Gibt eine Bitmap zurück, die alle Sprites zeigt, die gerade das angeforderte
Sprite berühren. Die Bits 0-63 in der zurückgegebenen Ganzzahl zeigen eine
aktuelle Kollision mit den Sprites 1 bis 64 an.

Gibt den Vektor vom Sprite „s1” zum Sprite „s2” in Radianten zurück.

Der Winkel basiert auf der Uhr, wenn also „s2” auf dem Bildschirm über „s1”
liegt, ist das Ergebnis Null. Das kann für jedes Paar sichtbarer Sprites
verwendet werden. Wenn eines der Sprites nicht sichtbar ist, gibt die Funktion -
1 zurück.

Das ist besonders nützlich nach einer Kollision, wenn der Programmierer eine
differenzierte Entscheidung treffen will, je nachdem, wo die Kollision passiert
ist. Der Winkel wird zwischen den Mittelpunkten der Sprites berechnet, die
natürlich unterschiedlich groß sein können.

Gibt die Breite von Sprite n zurück. Diese Funktion ist aktiv, unabhängig
davon, ob das Sprite gerade angezeigt wird (aktiv) oder nicht.

SPRITE(X, [#]n) Gibt die X-Koordinate von Sprite n zurück. Diese Funktion ist nur aktiv, wenn
das Sprite gerade angezeigt wird (aktiv). Andernfalls gibt sie 10000 zurück.

SPRITE(Y, [#]n) Gibt die Y-Koordinate von Sprite n zurück. Diese Funktion ist nur aktiv, wenn
das Sprite gerade angezeigt wird (aktiv). Sonst gibt sie 10000 zurück.

SQR(Zahl) Gibt die Quadratwurzel des Arguments „number” zurück.

PicoMite Benutzerhandbuch Seite 229

STR$(Zahl)

oder

STR$(Zahl, m)

oder

STR$(Zahl, m, n)

oder

STR$(Zahl, m, n, c$)

Gibt eine Zeichenfolge in der Dezimaldarstellung (Basis 10) von „number“
zurück.

Wenn 'm' angegeben ist, werden am Anfang der Zahl genügend Leerzeichen
eingefügt, damit die Anzahl der Zeichen vor dem Dezimalpunkt (einschließlich
des Vorzeichens) mindestens 'm' Zeichen beträgt. Wenn 'm' gleich Null ist oder
die Zahl mehr als 'm' signifikante Stellen hat, werden keine Leerzeichen
eingefügt.

Wenn 'm' negativ ist, werden positive Zahlen mit einem Pluszeichen und
negative Zahlen mit einem Minuszeichen versehen. Wenn 'm' positiv ist, wird
nur das Minuszeichen verwendet.

„n” ist die Anzahl der Stellen, die nach dem Dezimalpunkt stehen müssen.
Wenn es Null ist, wird die Zeichenfolge ohne Dezimalpunkt zurückgegeben.
Wenn es negativ ist, wird die Ausgabe immer das Exponentialformat mit einer
Auflösung von „n” Stellen verwenden. Wenn „n” nicht angegeben ist, variieren
die Anzahl der Dezimalstellen und das Ausgabeformat automatisch je nach
Zahl.

„c$“ ist eine Zeichenfolge. Wenn sie angegeben wird, wird das erste Zeichen
dieser Zeichenfolge anstelle eines Leerzeichens als Auffüllzeichen verwendet
(siehe Argument „m“). Beispiele für „ “:

STR$(123.456) gibt „123.456” zurück
STR$(-123.456) gibt „-123,456“ zurück
STR$(123.456, 1) gibt „123,456” zurück
STR$(123,456, -1) gibt „+123,456” zurück
STR$(123,456, 6) gibt „ 123,456” zurück
STR$(123,456, -6) gibt „+123,456” zurück
STR$(-123,456, 6) gibt „ -123,456” zurück
STR$(-123,456, 6, 5) gibt „ -123,45600” zurück
STR$(-123,456, 6, -5) gibt „ -1,23456e+02” zurück
STR$(53, 6) gibt „ 53” zurück
STR$(53, 6, 2) gibt „ 53,00”
STR$(53, 6, 2, "*") gibt „****53.00” zurück

STR2BIN(Typ, Zeichenfolge$
[,BIG])

Gibt eine Zahl zurück, die der binären Darstellung in „string$” entspricht.

„type” kann sein:

INT64 macht aus einer 8-Byte-Zeichenkette, die eine vorzeichenbehaftete 64-
Bit-Ganzzahl darstellt, eine Ganzzahl

UINT64 macht aus einer 8-Byte-Zeichenkette, die eine vorzeichenlose 64-Bit-
Ganzzahl ist, eine Ganzzahl

INT32 macht aus einer 4-Byte-Zeichenkette, die eine vorzeichenbehaftete 32-
Bit-Ganzzahl ist, eine Ganzzahl

UINT32 macht aus einer 4-Byte-Zeichenkette, die eine vorzeichenlose 32-Bit-
Ganzzahl ist, eine Ganzzahl

INT16 macht aus einer 2-Byte-Zeichenkette, die eine vorzeichenbehaftete 16-
Bit-Ganzzahl ist, eine Ganzzahl

UINT16 macht aus einer 2-Byte-Zeichenkette, die eine vorzeichenlose 16-Bit-
Ganzzahl ist, eine Ganzzahl

INT8 macht aus einer 1-Byte-Zeichenkette, die eine vorzeichenbehaftete 8-Bit-
Ganzzahl ist, eine Ganzzahl

UINT8 macht aus einer 1-Byte-Zeichenkette, die eine vorzeichenlose 8-Bit-
Ganzzahl ist, eine Ganzzahl

SINGLE macht aus einer 4-Byte-Zeichenkette, die eine Gleitkommazahl mit
einfacher Genauigkeit ist, eine Gleitkommazahl

DOUBLE macht aus einer 8-Byte-Zeichenkette, die eine Gleitkommazahl mit
einfacher Genauigkeit ist, eine Gleitkommazahl

Seite230 PicoMite-Benutzerhandbuch

Standardmäßig muss die Zeichenfolge die Zahl im Little-Endian-Format
enthalten (d. h. das

niedrigstwertige Byte ist das erste in der Zeichenfolge). Wenn du den dritten
Parameter auf „BIG” setzt, wird die Zeichenfolge im Big-Endian-Format
interpretiert (d. h. das

Byte das erste in der Zeichenkette ist).

Diese Funktion macht es einfach, Daten aus Binärdateien zu lesen, Zahlen von
Sensoren zu verstehen

Zahlen von Sensoren zu interpretieren oder Binärdaten effizient aus Flash-
Speicherchips zu lesen

.

Wenn die Zeichenfolge nicht die richtige Länge für die gewünschte
Konvertierung hat, wird ein Fehler ausgegeben.

gewünschte Konvertierung

Siehe auch die Funktion BIN2STR$

STRING$(nbr, ascii)

oder

STRING$(nbr, string$)

Gibt eine Zeichenfolge mit einer Länge von „nbr” Bytes zurück, die entweder
aus dem ersten Zeichen von string$ oder aus dem Zeichen besteht, das den
ASCII-Wert „ascii” darstellt, bei dem es sich um eine ganze Zahl oder eine
Gleitkommazahl im Bereich von 0 bis 255 handelt.

STRUCT(arg, …) Gibt Daten aus einer Struktur zurück (auch als benutzerdefinierter Typ
bekannt), die es ermöglicht, zusammengehörige Variablen unterschiedlicher
Typen unter einem einzigen Namen zu gruppieren.

Das wird ausführlich in der Datei „MMBasic_Structures_Manual.pdf”
beschrieben, die im ZIP-Archiv zum Herunterladen der Firmware enthalten ist.

TAB(Nummer) Gibt Leerzeichen aus, bis die durch „Nummer” angegebene Spalte in der
Konsolenausgabe erreicht ist.

TAN(Zahl) Gibt den Tangens des Arguments „number” in Radianten zurück.

TEMPR(Pin [,Timeout]) Gibt die Temperatur zurück, die von einem DS18B20-Temperatursensor
gemessen wurde, der an „Pin” angeschlossen ist (der nicht konfiguriert werden
muss).

Der zurückgegebene Wert ist in Grad Celsius mit einer Standardauflösung von
0,25 °C. Wenn während der Messung ein Fehler auftritt, ist der
zurückgegebene Wert 1000.

Die für die gesamte Messung benötigte Zeit beträgt 200 ms, und Interrupts
werden während dieses Zeitraums ignoriert.

Der optionale Parameter „timeout” kann verwendet werden, um den
Standardwert (200 ms) zu überschreiben und langsamere Geräte zu
berücksichtigen.

Alternativ kann der Befehl TEMPR START verwendet werden, um die
Messung zu starten, und dein Programm kann während der Konvertierung
andere Aufgaben ausführen. Wenn diese Funktion aufgerufen wird, wird der
Wert sofort zurückgegeben, vorausgesetzt, die Konvertierungszeit ist
abgelaufen. Ist dies nicht der Fall, wartet diese Funktion die restliche
Konvertierungszeit ab, bevor sie den Wert zurückgibt.

Der DS18B20 kann separat mit einer 3-V- bis 5-V-Stromversorgung betrieben
werden oder mit parasitärer Energie vom Raspberry Pi Pico.

Weitere Infos findest du im Kapitel „Spezielle Hardwaregeräte”.

PicoMite Benutzerhandbuch Seite 231

TIME$ Gibt die aktuelle Uhrzeit basierend auf der internen Uhr von MMBasic als
Zeichenfolge im Format „HH:MM:SS” in 24-Stunden-Notation zurück. Zum
Beispiel „14:30:00”.

Um die aktuelle Uhrzeit einzustellen, benutze den Befehl TIME$ = .

TIMER Gibt die seit dem Zurücksetzen verstrichene Zeit in Millisekunden (z. B.
1/1000 einer Sekunde) zurück.

Der Timer wird beim Einschalten oder bei einem Neustart der CPU auf Null
zurückgesetzt. Du kannst ihn auch mit dem Befehl TIMER zurücksetzen. Wenn
er nicht explizit zurückgesetzt wird, zählt er unendlich weiter (es handelt sich
um eine 64-Bit-Zahl, die erst nach 200 Millionen Jahren wieder auf Null
zurücksetzt).

TOUCH(X)

oder

TOUCH(Y

oder nur FT6336

TOUCH(X2)

oder

TOUCH(Y2)

Gibt die X- oder Y-Koordinate der Stelle zurück, die gerade auf einem LCD-
Bildschirm berührt wird.

Wenn der Bildschirm nicht berührt wird, gibt die Funktion -1 zurück.

Für den FT6336 geben TOUCH(X2) und TOUCH(Y2) die Position einer
zweiten Berührungsstelle zurück oder -1, wenn keine zweite Stelle berührt wird.

TRIM$(Quelle$ [,Maske$]
[,wo/wo$])

Diese Funktion kann Zeichen am Anfang oder Ende einer Zeichenfolge oder an
beiden Stellen entfernen.
„source$” ist die Eingabezeichenfolge
„mask$” ist eine Zeichenkette, die eine Liste der zu entfernenden Zeichen
enthält. Wenn sie weggelassen wird, ist der Standardwert ein Leerzeichen.
„where/where$” kann L, R oder B sein oder eine Zeichenkette, die mit L, R
oder B anfängt, um
angeben, welche Zeichen links von der Quelle,
rechts von der Quelle oder an beiden Stellen entfernt werden sollen. Wenn das
weggelassen wird, ist die Standardeinstellung L.

UCASE$(string$) Gibt „string$“ in Großbuchstaben zurück.

VAL(string$) Gibt den numerischen Wert von „string$” zurück. Wenn „string$” eine
ungültige Zahl ist, gibt die Funktion Null zurück.

Diese Funktion erkennt das Präfix &H für eine Hexadezimalzahl, &O für eine
Oktalzahl und &B für eine Binärzahl.

Seite232 PicoMite-Benutzerhandbuch

Veraltete Befehle und Funktionen
Detaillierte Liste
Diese Befehle und Funktionen sind hauptsächlich dazu da, um bei der Konvertierung von Programmen zu
helfen, die für Microsoft BASIC geschrieben wurden. Für neue Programme solltest du die entsprechenden
modernen Befehle in MMBasic verwenden.

Beachte, dass diese Befehle/Funktionen in Zukunft entfernt werden können, um Speicherplatz für andere
Funktionen freizugeben.

BITBANG Ersetzt durch den Befehl DEVICE. Aus Kompatibilitätsgründen kann
BITBANG weiterhin in Programmen verwendet werden und wird automatisch
in DEVICE umgewandelt.

DEVICE CAMERA In den Befehl CAMERA geändert.

DEVICE GAMEPAD Wurde zum Befehl GAMEPAD geändert.

DEVICE HUMID In den Befehl HUMID geändert

DEVICE KEYPAD In den Befehl KEYPAD geändert

DEVICE MOUSE Jetzt heißt es MOUSE

GERÄT LCD In den Befehl LCD geändert

DEVICE WII In den Befehl WII geändert

DEVICE WS2812 Geändert zu WS2812-Befehl

GOSUB-Ziel Startet einen Unterprogrammaufruf zum Ziel, das eine Zeilennummer oder eine
Bezeichnung sein kann. Das Unterprogramm muss mit RETURN enden.

Neue Programme sollten definierte Unterprogramme verwenden (d. h. SUB…
END SUB).

IF-Bedingung THEN
Zeilenumbruch

Aus Gründen der Kompatibilität mit Microsoft wird ein GOTO angenommen,
wenn auf die THEN-Anweisung eine Zahl folgt. Ein Label ist in dieser
Konstruktion ungültig.

Neue Programme sollten Folgendes verwenden: IF-Bedingung THEN GOTO
Zeilenumbruch | Label

IRETURN Kehrt von einer Unterbrechung zurück, wenn das Ziel der Unterbrechung eine
Zeilennummer oder ein Label war.

Neue Programme sollten eine benutzerdefinierte Subroutine als Interrupt-Ziel
verwenden. In diesem Fall bewirkt END SUB oder EXIT SUB eine Rückkehr
aus dem Interrupt.

ON nbr GOTO | GOSUB
target[,target, target,..]

ON verzweigt entweder (GOTO) oder ruft eine Unterroutine auf (GOSUB),
basierend auf dem gerundeten Wert von „nbr”; wenn dieser 1 ist, wird das erste
Ziel aufgerufen, wenn 2, das zweite Ziel usw. Das Ziel kann eine
Zeilennummer oder eine Bezeichnung sein.

Neue Programme sollten SELECT CASE verwenden.

POS Gibt für die Konsole die aktuelle Cursorposition in der Zeile in Zeichen
zurück.

RETURN RETURN beendet eine mit GOSUB aufgerufene Unterroutine und kehrt zur
Anweisung nach dem GOSUB zurück.

PicoMite Benutzerhandbuch Seite 233

Anhang A – Serielle Kommunikation
Serielle Kommunikation

Für die asynchrone serielle Kommunikation stehen zwei serielle Schnittstellen zur Verfügung. Sie sind mit COM1:
und COM2: gekennzeichnet.

E/A-Pins
Bevor eine serielle Schnittstelle genutzt werden kann, müssen die I/O-Pins mit dem folgenden Befehl für den
ersten Kanal (bezeichnet als COM1) definiert werden:

SETPIN rx, tx, COM1

Gültige Pins sind RX: GP1, GP13 oder GP17

TX: GP0, GP12, GP16 oder GP28

Und der folgende Befehl für den zweiten Kanal (als COM2 bezeichnet):

SETPIN rx, tx, COM2

Gültige Pins sind RX: GP5, GP9 oder GP21

TX: GP4, GP8 oder GP20

TX sind Daten vom Raspberry Pi Pico und RX sind Daten an ihn.

Beachte, dass bei der WebMite-Version COM1 und COM2 auf GP20 bis GP28 nicht verfügbar sind.

Die Signalpolarität ist Standard für Geräte, die mit TTL-Spannungen laufen. Im Leerlauf ist die Spannung
hoch, das Startbit ist eine niedrige Spannung, Daten verwenden eine hohe Spannung für Logik 1 und das
Stoppbit ist eine hohe Spannung. Mit diesen Signalpegeln kannst du Geräte wie GPS-Module (die
normalerweise TTL-Spannungspegel verwenden) direkt anschließen.

Befehle
Nach dem Öffnen hat die serielle Schnittstelle eine zugeordnete Dateinummer, und du kannst alle Befehle
verwenden, die mit einer Dateinummer arbeiten, um Daten zu lesen und zu schreiben. Eine serielle Schnittstelle
kann mit dem Befehl CLOSE geschlossen werden.

Hier ein Beispiel:
SETPIN GP13, GP16, COM1 ' Weisen Sie die E/A-Pins für die erste serielle
Schnittstelle zu.
OPEN „COM1:4800” AS #5 ' Öffne den ersten seriellen Anschluss mit einer
Geschwindigkeit von 4800 Baud
PRINT #5, „Hallo” ' Schick die Zeichenfolge „Hallo” über den seriellen
Port raus
dat$ = INPUT$(20, #5) ' bis zu 20 Zeichen vom seriellen Port holen
CLOSE #5 ' Schließ die serielle Schnittstelle

Der Befehl OPEN
Eine serielle Schnittstelle wird mit dem Befehl geöffnet:
OPEN comspec$ AS #fnbr

 „fnbr” ist die zu verwendende Dateinummer. Sie muss zwischen 1 und 10 liegen. Das # ist optional.

„comspec$“ ist die Kommunikationsspezifikation und eine Zeichenfolge (kann eine Zeichenfolgenvariable
sein), die die zu öffnende serielle Schnittstelle und optionale Parameter angibt. Die Standardeinstellung ist
9600 Baud, 8 Datenbits, keine Parität und ein Stoppbit.

Die Form lautet: "COMn: baud, buf, int, int-trigger, EVEN, ODD, S2, 7BIT" Dabei gilt:

 „n” die Nummer der seriellen Schnittstelle für entweder COM1: oder COM2: ist.

 „baud” die Baudrate ist. Diese kann zwischen 1200 und 921600 liegen. Der Standardwert ist 9600.

 „buf” die Größe des Empfangspuffers in Byte ist (Standardgröße ist 256). Der Sendepuffer ist auf 256
Byte festgelegt.

 „int“ ist die Interrupt-Subroutine, die aufgerufen wird, wenn der serielle Anschluss Daten empfangen hat.

 „int-trigger“ ist die Anzahl der empfangenen Zeichen, die einen Interrupt auslösen.

Seite234 PicoMite-Benutzerhandbuch

Alle Parameter außer dem Namen der seriellen Schnittstelle (COMn:) sind optional. Wenn ein Parameter
weggelassen wird, müssen auch alle folgenden Parameter weggelassen werden, und es werden die
Standardwerte verwendet.

Am Ende von „comspec$“ können fünf Optionen hinzugefügt werden. Diese sind:

 „S2“ gibt an, dass nach jedem übertragenen Zeichen zwei Stoppbits gesendet werden.

 EVEN gibt an, dass ein gerades Paritätsbit angewendet wird, was zu einer 9-Bit-Übertragung führt, sofern
nicht 7BIT gesetzt ist.

 ODD legt fest, dass ein ungerades Paritätsbit angewendet wird, was zu einer 9-Bit-Übertragung führt, es
sei denn, 7BIT ist gesetzt.

 7BIT legt fest, dass 7 Datenbits vorhanden sind. Dies wird normalerweise zusammen mit EVEN oder
ODD verwendet.

 INV bedeutet, dass die Ausgangssignale invertiert werden und die Eingabe als invertiert angenommen
wird.

Beispiele
Öffnen einer seriellen Schnittstelle mit allen Standardeinstellungen:
ÖFFNE „COM1:“ ALS #2

Öffnen einer seriellen Schnittstelle, wobei nur die Baudrate (4800 Bit pro Sekunde) angegeben wird:
OPEN „COM1:4800” AS #1

Öffnen eines seriellen Anschlusses mit Angabe der Baudrate (9600 Bit pro Sekunde) und der
Empfangspuffergröße (1 KB):
OPEN "COM2:9600, 1024" AS #8

Wie oben, aber mit zwei Stoppbits:
OPEN "COM2:9600, 1024, S2" AS #8

Ein Beispiel, bei dem alles angegeben wird, einschließlich einer Unterbrechung, einer Unterbrechungsstufe und
zwei Stoppbits:
OPEN "COM2:19200, 1024, ComIntLabel, 256, S2" AS #5

Lesen und Schreiben
Sobald eine serielle Schnittstelle geöffnet ist, kannst du jeden Befehl oder jede Funktion verwenden, die eine
Dateinummer zum Lesen und Schreiben auf die Schnittstelle nutzt. Daten, die über die serielle Schnittstelle
empfangen werden, werden von MMBasic automatisch im Speicher gepuffert, bis sie vom Programm gelesen
werden. Die Funktion INPUT$() ist dafür am besten geeignet. Bei Verwendung der Funktion INPUT$()
entspricht die angegebene Zeichenanzahl der maximalen Anzahl der zurückgegebenen Zeichen, kann jedoch
geringer sein, wenn sich weniger Zeichen im Empfangspuffer befinden. Tatsächlich gibt die Funktion INPUT$
() sofort eine leere Zeichenfolge zurück, wenn im Empfangspuffer keine Zeichen verfügbar sind.

Die Funktion LOC() ist auch praktisch; sie gibt die Anzahl der Zeichen zurück, die im Empfangspuffer warten
(d. h. die maximale Anzahl von Zeichen, die von der Funktion INPUT$() abgerufen werden können). Beachte,
dass der serielle Port automatisch die ältesten Daten löscht, um Platz für neue Daten zu schaffen, wenn der
Empfangspuffer mit eingehenden Daten überläuft.

Der Befehl PRINT wird für die Ausgabe an eine serielle Schnittstelle verwendet, und alle zu sendenden Daten
werden in einem Speicherpuffer gehalten, während die serielle Schnittstelle sie sendet. Das heißt, dass
MMBasic nach dem Befehl PRINT mit der Ausführung der Befehle fortfährt, während die Daten übertragen
werden. Die einzige Ausnahme ist, wenn der Ausgabepuffer voll ist. In diesem Fall hält MMBasic an und
wartet, bis genügend Platz vorhanden ist, bevor es fortfährt. Die Funktion LOF() gibt die verbleibende
Kapazität im Sendepuffer zurück. Damit kannst du vermeiden, dass das Programm ins Stocken gerät, während
es darauf wartet, dass im Puffer wieder Platz verfügbar wird.

Wenn du sicher sein willst, dass alle Daten gesendet wurden (vielleicht weil du die Antwort vom Remote-Gerät
lesen willst), solltest du warten, bis die Funktion LOF() den Wert 256 (die Größe des Sendepuffers) zurückgibt,
was bedeutet, dass nichts mehr zu senden ist.

Serielle Schnittstellen kannst du mit dem Befehl CLOSE schließen. Dadurch wird gewartet, bis der Sendepuffer
leer ist, dann wird der von den Puffern belegte Speicher freigegeben und der Interrupt (falls gesetzt)
abgebrochen. Eine serielle Schnittstelle wird auch automatisch geschlossen, wenn Befehle wie RUN und NEW
ausgegeben werden.

PicoMite Benutzerhandbuch Seite 235

Interrupts
Die Interrupt-Subroutine (falls angegeben) funktioniert genauso wie ein allgemeiner Interrupt an einem
externen E/A-Pin (siehe Kapitel „Verwendung der E/A-Pins” für eine Beschreibung).

Bei der Verwendung von Interrupts musst du beachten, dass es einige Zeit dauert, bis MMBasic auf den
Interrupt reagiert, und dass in der Zwischenzeit weitere Zeichen eingegangen sein können, insbesondere bei
hohen Baudraten. Wenn du zum Beispiel die Interrupt-Stufe auf 200 Zeichen und einen Puffer von 256
Zeichen festgelegt hast, kann es leicht passieren, dass der Puffer überläuft, bevor die Interrupt-Subroutine die
Daten lesen kann. In diesem Fall solltest du den Puffer auf 512 Zeichen oder mehr erhöhen.

Seite236 PicoMite-Benutzerhandbuch

Anhang B – I2C-Kommunikation
I2C-Kommunikation

Es gibt zwei I2C-Kanäle. Die können im Master- oder Slave-Modus laufen.

I/O-Pins
Bevor die I2C-Schnittstelle genutzt werden kann, musst du die I/O-Pins mit dem folgenden Befehl für den
ersten Kanal (als I2C bezeichnet) definieren:

SETPIN sda, scl, I2C

Gültige Pins sind SDA: GP0, GP4, GP8, GP12, GP16, GP20 oder GP28

SCL: GP1, GP5, GP9, GP13, GP17 oder GP21

Beachte, dass bei der WebMite-Version I2C SDA auf GP28 nicht verfügbar ist

Und der folgende Befehl für den zweiten Kanal (als I2C2 bezeichnet):

SETPIN sda, scl, I2C2

Gültige Pins sind SDA: GP2, GP6, GP10, GP14, GP18, GP22 oder GP26

SCL: GP3, GP7, GP11, GP15, GP19 oder GP27

Wenn der I2C-Bus mit mehr als 100 kHz läuft, ist die Verkabelung zwischen den Geräten echt wichtig. Am
besten sollten die Kabel so kurz wie möglich sein (um die Kapazität zu verringern) und die Daten- und
Taktleitungen sollten nicht nebeneinander verlaufen, sondern durch ein Erdungskabel voneinander getrennt sein
(um Übersprechen zu reduzieren).

Wenn die Datenleitung bei hohem Takt nicht stabil ist oder die Taktleitung schwankend ist, können die I2C-
Peripheriegeräte „verwirrt” werden und den Bus sperren (normalerweise durch Halten der Taktleitung auf
niedrigem Niveau). Wenn du keine höheren Geschwindigkeiten benötigst, ist der Betrieb mit 100 kHz die
sicherste Wahl.

Mit dem Befehl I2C CHECK addr kannst du überprüfen, ob ein Gerät an der Adresse „addr” vorhanden ist.
Dadurch wird die schreibgeschützte Variable MM.I2C auf 0 gesetzt, wenn ein Gerät antwortet, oder auf 1,
wenn keine Antwort erfolgt.

I2 C-Master-Befehle
Es gibt vier Befehle, die für den ersten Kanal (I2C) im Master-Modus verwendet werden können, wie folgt.

Die Befehle für den zweiten Kanal (I2C2) sind identisch, außer dass der Befehl I2C2 lautet.

I2C OPEN
Geschwindigkeit,
Zeitüberschreitung

Aktiviert das I2C-Modul im Master-Modus. Der Befehl I2C bezieht sich auf Kanal
1, während der Befehl I2C2 sich mit derselben Syntax auf Kanal 2 bezieht.

„speed” ist die zu verwendende Taktrate (in KHz) und muss entweder 100, 400
oder 1000 sein.

„timeout” ist ein Wert in Millisekunden, nach dem die Master-Sende- und
Empfangskommandos unterbrochen werden, wenn sie nicht abgeschlossen sind.
Der Mindestwert ist 100. Ein Wert von Null deaktiviert das Timeout (dies wird
jedoch nicht empfohlen).

I2C WRITE addr,
option, sendlen,
senddata [,sendata ..]

Sendet Daten an das I2C-Slave-Gerät. Der Befehl I2C bezieht sich auf Kanal 1,
während der Befehl I2C2 sich mit derselben Syntax auf Kanal 2 bezieht.

„addr” ist die I2C-Adresse des Slaves.

„option“ kann 0 für den normalen Betrieb oder 1 sein, um die Kontrolle über den
Bus nach dem Befehl zu behalten (eine Stoppbedingung wird nach Abschluss des
Befehls nicht gesendet).

„sendlen“ ist die Anzahl der zu sendenden Bytes.

„senddata“ sind die zu sendenden Daten – diese können auf verschiedene Weise
angegeben werden (alle Daten werden als Bytes mit einem Wert zwischen 0 und
255 gesendet):

 Die Daten können als einzelne Bytes in der Befehlszeile angegeben werden.

PicoMite Benutzerhandbuch Seite 237

Beispiel: I2C WRITE &H6F, 0, 3, &H23, &H43, &H25

 Die Daten können in einem eindimensionalen Array angegeben werden, das
mit leeren Klammern (d. h. ohne Dimensionen) angegeben wird. „sendlen“
Bytes des Arrays werden beginnend mit dem ersten Element gesendet.
Beispiel: I2C WRITE &H6F, 0, 3, ARRAY()

 Die Daten können eine String-Variable sein (keine Konstante).
Beispiel: I2C WRITE &H6F, 0, 3, STRING$

I2C READ addr,
option, rcvlen, rcvbuf

Ruft Daten vom I2C-Slave-Gerät ab. Der Befehl I2C bezieht sich auf Kanal 1,
während der Befehl I2C2 sich mit derselben Syntax auf Kanal 2 bezieht.

„addr” ist die I2C-Adresse des Slaves.

„option” kann 0 für den normalen Betrieb oder 1 sein, um die Kontrolle über den
Bus nach dem Befehl zu behalten (eine Stoppbedingung wird nach Abschluss des
Befehls nicht gesendet).

„rcvlen” ist die Anzahl der zu empfangenden Bytes.

„rcvbuf“ ist die Variable oder das Array, das zum Speichern der empfangenen
Daten verwendet wird – dies kann sein:

 Eine Zeichenfolgenvariable. Die Bytes werden als aufeinanderfolgende
Zeichen in der Zeichenfolge gespeichert.

 Ein eindimensionales Array von Zahlen, das mit leeren Klammern angegeben
wird. Die empfangenen Bytes werden in aufeinanderfolgenden Elementen des
Arrays gespeichert, beginnend mit dem ersten.
Beispiel: I2C READ &H6F, 0, 3, ARRAY()

 Eine normale numerische Variable (in diesem Fall muss „rcvlen” 1 sein).

I2C CLOSE Deaktiviert das Master-I2-C-Modul und versetzt die E/A-Pins wieder in den
Zustand „nicht konfiguriert”. Dieser Befehl sendet auch ein Stopp-Signal, wenn
der Bus noch gehalten wird.

I2C-Slave-Befehle

I2C SLAVE OPEN
addr, send_int,
rcv_int

Aktiviert das I2C-Modul im Slave-Modus. Der Befehl I2C bezieht sich auf Kanal
1, während der Befehl I2C2 sich mit derselben Syntax auf Kanal 2 bezieht.

„addr” ist die Slave-I2C-Adresse.

„send_int” ist die Subroutine, die aufgerufen wird, wenn das Modul erkennt, dass
der Master Daten erwartet.

„rcv_int” ist die Subroutine, die aufgerufen wird, wenn das Modul Daten vom
Master empfangen hat. Beachte, dass dies beim Empfang des ersten Bytes
ausgelöst wird, sodass dein Programm möglicherweise warten muss, bis alle Daten
empfangen wurden.

I2C SLAVE WRITE
sendlen, senddata
[,sendata ..]

Sende die Daten an den I2C-Master. Der Befehl I2C bezieht sich auf Kanal 1,
während der Befehl I2C2 sich mit derselben Syntax auf Kanal 2 bezieht.

Dieser Befehl sollte im Sende-Interrupt verwendet werden (d. h. in der Subroutine
„send_int”, wenn der Master Daten angefordert hat). Alternativ kann in der
Interrupt-Subroutine ein Flag gesetzt und der Befehl aus der
Hauptprogrammschleife aufgerufen werden, wenn das Flag gesetzt ist.

„sendlen” ist die Anzahl der zu sendenden Bytes.

„senddata” sind die zu sendenden Daten. Diese können auf verschiedene Weise
angegeben werden, siehe die I2C-WRITE-Befehle für Details.

Seite238 PicoMite-Benutzerhandbuch

I2C SLAVE READ
rcvlen, rcvbuf, rcvd

Empfängt Daten vom I2C-Master-Gerät. Der Befehl I2C bezieht sich auf Kanal 1,
während der Befehl I2C2 sich mit derselben Syntax auf Kanal 2 bezieht.

Dieser Befehl sollte im Empfangsinterrupt verwendet werden (d. h. in der
Subroutine „rcv_int“, wenn der Master Daten gesendet hat). Alternativ kann in der
Empfangsinterrupt-Subroutine ein Flag gesetzt und der Befehl aus der
Hauptprogrammschleife aufgerufen werden, wenn das Flag gesetzt ist.

„rcvlen” ist die maximale Anzahl von Bytes, die empfangen werden sollen.

„rcvbuf” ist die Variable, die die Daten empfängt. Diese kann auf verschiedene
Weise angegeben werden, siehe die I2C-READ-Befehle für Details.

„rcvd” ist eine Variable, die nach Abschluss des Befehls die tatsächlich
empfangene Anzahl von Bytes enthält (die von „rcvlen” abweichen kann).

I2C SLAVE CLOSE Deaktiviert das Slave-I2-C-Modul und setzt die externen E/A-Pins wieder auf
„nicht konfiguriert”. Sie können dann mit SETPIN konfiguriert werden.

Fehler
Nach einem I2C-Schreib- oder Lesevorgang wird die automatische Variable MM.I2C gesetzt, um das Ergebnis
wie folgt anzuzeigen:

0 = Der Befehl wurde ohne Fehler abgeschlossen.
1 = NACK-Antwort erhalten
2 = Befehl abgelaufen

7-Bit-Adressierung
Die Standardadressen, die in diesen Befehlen benutzt werden, sind 7-Bit-Adressen (ohne Lese-/Schreibbit).
MMBasic fügt das Lese-/Schreibbit hinzu und passt es während der Übertragungen entsprechend an.

Einige Anbieter stellen 8-Bit-Adressen zur Verfügung, die das Lese-/Schreibbit enthalten. Du kannst
feststellen, ob das der Fall ist, weil sie eine Adresse zum Schreiben auf das Slave-Gerät und eine andere zum
Lesen vom Slave bereitstellen. In diesen Fällen solltest du nur die oberen sieben Bits der Adresse verwenden.
Beispiel: Wenn die Leseadresse 9B (hex) und die Schreibadresse 9A (hex) ist, erhältst du durch Verwendung
nur der oberen sieben Bits die Adresse 4D (hex).

Ein weiterer Hinweis darauf, dass ein Anbieter 8-Bit-Adressen anstelle von 7-Bit-Adressen verwendet, ist die
Überprüfung des Adressbereichs. Alle 7-Bit-Adressen sollten im Bereich von 08 bis 77 (hex) liegen. Wenn
deine Slave-Adresse größer als dieser Bereich ist, hat dein Anbieter wahrscheinlich eine 8-Bit-Adresse
bereitgestellt.

Beispiele
Als Beispiel für eine einfache Kommunikation, bei der der Raspberry Pi Pico der Master ist, liest und zeigt das
folgende Programm die aktuelle Uhrzeit (Stunden und Minuten) an, die von einem PCF8563-Echtzeituhr-Chip
gespeichert wird, der an den zweiten I2C-Kanal angeschlossen ist:

DIM AS INTEGER RData(2) ' hier werden die empfangenen Daten
gespeichert
SETPIN GP6, GP7, I2C2 ' Weist die I/O-Pins für I2C2 zu
I2C2 OPEN 100, 1000 ' Öffne den I2C-Kanal
I2C2 WRITE &H51, 0, 1, 3 ' Setze das erste Register auf 3
I2C2 READ &H51, 0, 2, RData() ' zwei Register lesen
I2C2 CLOSE ' I2C-Kanal schließen
PRINT "Die Zeit ist " hex$(RData(1),2) ":" hex$(RData(0),2) 'Zeige die BCD-
codierten Daten an

Dies ist ein Beispiel für die Kommunikation zwischen zwei Raspberry Pi Picos. Der Master sendet die Zeichen
„A” bis „Z” und sendet nach jeder Übertragung eine Anfrage an den Slave und gibt die Antwort aus. Der Slave
liest das vom Master gesendete Byte und gibt es aus. Als Antwort auf die Anfrage des Masters sendet er die
aktuelle Uhrzeit.

Zuerst der Master:

SETPIN GP2, GP3, I2C2
I2C2 OPEN 100, 1000
FOR i = 65 to 90

PicoMite Benutzerhandbuch Seite 239

 a$ = CHR$(i)
 I2C2 WRITE &H50, 0, 1, a$
 PAUSE 500
 I2C2 READ &H50, 0, 8, a$
 a$ ausgeben
 PAUSE 500
NECT i

Dann der Slave:

SETPIN GP2, GP3, I2C2
I2C2 SLAVE OPEN &H50, tint, rint
DO : LOOP

SUB rint
 LOCAL count, a$
 I2C2 SLAVE READ 10, a$, count
 PRINT LEFT$(a$, count)
END SUB

SUB tint
 LOKAL a$ = Zeit$
 I2C2 SLAVE WRITE LEN(a$), a$
END SUB

Seite240 PicoMite-Benutzerhandbuch

Anhang C – 1-Wire-Kommunikation
1-Wire-Kommunikation

Das 1-Wire-Protokoll wurde von Dallas Semiconductor entwickelt, um über eine einzige Signalleitung mit
Chips zu kommunizieren. Diese Implementierung wurde von Gerard Sexton für MMBasic geschrieben.

Es gibt drei Befehle, die du verwenden kannst:

ONEWIRE RESET pin Setzt den 1-Wire-Bus zurück

ONEWIRE WRITE pin, flag, length, data [, data…] Schickt eine Anzahl von Bytes

ONEWIRE READ Pin, Flag, Länge, Daten [, Daten…] Ein paar Bytes holen

Wo:

Pin – Der zu verwendende E/A-Pin. Das kann jeder Pin sein, der digitale E/A unterstützt.

Flag – Eine Kombination der folgenden Optionen:

1 – Reset vor Befehl senden

2 – Reset nach Befehl senden

4 – Nur ein Bit statt eines Bytes an Daten senden/empfangen

8 – Starke Pullup-Funktion nach dem Befehl ausführen (der Pin wird auf High gesetzt und
Open Drain deaktiviert)

length – Länge der zu sendenden oder zu empfangenden Daten

data – Zu sendende Daten oder zu empfangende Variable.
Die Anzahl der Datenelemente muss mit dem Parameter „length” übereinstimmen.

Die automatische Variable MM.ONEWIRE gibt „true“ zurück, wenn ein Gerät gefunden wurde

Nach der Ausführung des Befehls wird der I/O-Pin auf den nicht konfigurierten Zustand gesetzt, es sei denn,
die Flag-Option 8 wird verwendet.

Wenn ein Reset angefordert wird, gibt die automatische Variable MM.ONEWIRE „true“ zurück, wenn ein
Gerät gefunden wurde. Das passiert beim Befehl ONEWIRE RESET und den Befehlen ONEWIRE READ und
ONEWIRE WRITE, wenn ein Reset angefordert wurde (Flag = 1 oder 2).

Das 1-Wire-Protokoll wird oft für die Kommunikation mit dem Temperaturmesssensor DS18B20 verwendet.
Um das zu unterstützen, hat MMBasic die Funktion TEMPR(), die eine bequeme Methode bietet, um die
Temperatur eines DS18B20 direkt zu lesen, ohne diese Funktionen zu benutzen.

PicoMite Benutzerhandbuch Seite 241

Anhang D – SPI-Kommunikation
SPI-Kommunikation

Das Kommunikationsprotokoll Serial Peripheral Interface (SPI) wird zum Senden und Empfangen von Daten
zwischen integrierten Schaltkreisen verwendet. Der Raspberry Pi Pico fungiert als Master (d. h. er generiert
den Takt).

I/O-Pins
Bevor eine SPI-Schnittstelle genutzt werden kann, müssen die I/O-Pins für den Kanal mit den folgenden
Befehlen zugewiesen werden. Für den ersten Kanal (bezeichnet als SPI) lautet der Befehl:

SETPIN rx, tx, clk, SPI

Gültige Pins sind RX: GP0, GP4, GP16 oder GP20

TX: GP3, GP7 oder GP19

CLK: GP2, GP6 oder GP18

Und der folgende Befehl für den zweiten Kanal (bezeichnet als SPI2) lautet:

SETPIN rx, tx, clk, SPI2

Gültige Pins sind RX: GP8, GP12 oder GP28

TX: GP11, GP15 oder GP27

CLK: GP10, GP14 oder GP26

TX sind Daten vom Raspberry Pi Pico und RX sind Daten an ihn.

Beachte, dass bei der WebMite-Version SPI1 und SPI2 auf GP20 bis GP28 nicht verfügbar sind.

SPI öffnen
Um die SPI-Funktion zu nutzen, musst du zuerst den SPI-Kanal öffnen.

Die Syntax zum Öffnen des ersten SPI-Kanals ist (für den zweiten Kanal SPI2 verwenden):
SPI OPEN Geschwindigkeit, Modus, Bits

Dabei gilt:

 „speed” die gewünschte Geschwindigkeit für den SPI-Takt ist. Es kann jeder Wert angefordert werden,
die Firmware wählt dann die nächste erreichbare Geschwindigkeit, die gleich oder langsamer als die
angeforderte Geschwindigkeit ist. Die tatsächlich eingestellte Geschwindigkeit ist CPU-
Geschwindigkeit/2 geteilt durch 1 bis 256.

 „mode” ist eine einzelne Ziffer, die den Übertragungsmodus angibt – siehe Übertragungsformat unten.

 „bits” ist die Anzahl der zu sendenden/empfangenden Bits. Dies kann eine beliebige Zahl im Bereich
von 4 bis 16 Bits sein.

 Es liegt in der Verantwortung des Programms, den CS-Pin (Chip Select) bei Bedarf separat zu
manipulieren.

Übertragungsformat
Das höchstwertige Bit wird zuerst gesendet und empfangen. Das Format der Übertragung kann durch den
„mode“ wie unten gezeigt festgelegt werden. Mode 0 ist das gängigste Format.

Mod
us

Beschreibung CPOL CPHA

0 Der Takt ist hochaktiv, die Daten werden an der steigenden Flanke erfasst und an der
fallenden Flanke ausgegeben.

0 0

1 Der Takt ist hochaktiv, die Daten werden an der fallenden Flanke erfasst und an der
steigenden Flanke ausgegeben.

0 1

2 Der Takt ist aktiv Low, die Daten werden an der fallenden Flanke erfasst und an der
steigenden Flanke ausgegeben.

1 0

3 Der Takt ist aktiv niedrig, die Daten werden an der steigenden Flanke erfasst und an
der fallenden Flanke ausgegeben.

1 1

Seite242 PicoMite-Benutzerhandbuch

Eine ausführlichere Erklärung findest du unter: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Standardmäßiges Senden/Empfangen
Wenn der erste SPI-Kanal offen ist, kannst du Daten mit der SPI-Funktion senden und empfangen (für den
zweiten Kanal nimmst du SPI2). Die Syntax ist:

received_data = SPI(data_to_send)

Beachte, dass bei einer einzelnen SPI-Transaktion Daten gesendet und gleichzeitig Daten vom Slave
empfangen werden. „data_to_send” sind die zu sendenden Daten, und die Funktion gibt die während der
Transaktion empfangenen Daten zurück. „data_to_send” kann eine Ganzzahl, eine Gleitkommavariable oder
eine Konstante sein.

Wenn du keine Daten senden möchtest (d. h. nur empfangen möchtest), kannst du eine beliebige Zahl (z. B.
Null) für die zu sendenden Daten verwenden. Wenn du die empfangenen Daten nicht verwenden möchtest,
kannst du sie einer Variablen zuweisen und ignorieren.

Massenversand/-empfang
Daten können auch massenhaft gesendet werden (verwende SPI2 für den zweiten Kanal):

SPI WRITE nbr, data1, data2, data3, … etc
oder

SPI WRITE nbr, string$
oder

SPI WRITE nbr, array()

Bei der ersten Methode ist „nbr” die Anzahl der zu sendenden Datenelemente und die Daten sind die
Ausdrücke in der Argumentliste (also „data1”, „data2” usw.). Die Daten können eine Ganzzahl, eine
Gleitkommavariable oder eine Konstante sein.

Bei der zweiten oder dritten Methode, die oben aufgeführt sind, sind die zu sendenden Daten in „string$” oder
im Inhalt von „array()” (das ein eindimensionales Array aus Ganzzahlen oder Gleitkommazahlen sein muss)
enthalten. Die Länge der Zeichenfolge oder die Größe des Arrays muss gleich oder größer als nbr sein. Alle
vom Slave zurückgegebenen Daten werden verworfen.

Daten können auch in großen Mengen empfangen werden (verwende SPI2 für den zweiten Kanal):
SPI READ nbr, array()

Dabei ist „nbr” die Anzahl der zu empfangenden Datenelemente und array() ein eindimensionales Array mit
Ganzzahlen, in dem die empfangenen Datenelemente gespeichert werden. Dieser Befehl sendet Nullen,
während die Daten vom Slave gelesen werden.

SPI Close
Bei Bedarf kann der erste SPI-Kanal wie folgt geschlossen werden (die I/O-Pins werden auf inaktiv gesetzt):

SPI CLOSE

Verwende SPI2 für den zweiten Kanal.

Beispiele
Das folgende Beispiel zeigt, wie man den SPI-Port für allgemeine E/A nutzen kann. Es sendet einen Befehl 80
(hex) und empfängt zwei Bytes vom SPI-Slave-Gerät mit der Standard-Sende-/Empfangsfunktion:

 PIN(10) = 1 : SETPIN 10, DOUT ' Pin 10 wird als Freigabesignal verwendet
 SETPIN GP20, GP3, GP2, SPI ' I/O-Pins zuweisen
 SPI OPEN 5000000, 3, 8 ' Geschwindigkeit ist 5 MHz und die Datengröße
ist 8 Bit
 PIN(10) = 0 ' Freigabeleitung aktivieren (aktiv niedrig)
 junk = SPI(&H80) ' Befehl senden und Rückgabe ignorieren
 byte1 = SPI(0) ' hol das erste Byte vom Slave
 byte2 = SPI(0) ' hol das zweite Byte vom Slave
 PIN(10) = 1 ' Slave abwählen
 SPI CLOSE ' und Kanal schließen

PicoMite Benutzerhandbuch Seite 243

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Das Folgende ähnelt dem oben genannten Beispiel, aber diesmal wird die Übertragung mit den Befehlen für
Massen-Senden/Empfangen gemacht:

 OPTION BASE 1 ' Unser Array beginnt mit dem Index 1
 DIM data%(2) ' Definiere das Array zum Empfangen der Daten
 SETPIN GP20, GP3, GP2, SPI ' Weisen Sie die E/A-Pins zu
 PIN(10) = 1 : SETPIN 10, DOUT ' Pin 10 wird als Freigabesignal genutzt
 SPI OPEN 5000000, 3, 8 ' Geschwindigkeit ist 5 MHz, 8 Bit Daten
 PIN(10) = 0 ' Freigabeleitung aktivieren (aktiv niedrig)
 SPI WRITE 1, &H80 ' Befehl senden
 SPI READ 2, data%() ' zwei Bytes vom Slave holen
 PIN(10) = 1 ' Slave abwählen
 SPI CLOSE ' und Kanal schließen

Seite244 PicoMite-Benutzerhandbuch

Anhang E – Regex-Syntax
Regex-Syntax
Die alternativen Formen der Funktionen INSTR() und LINSTR() können einen regulären Ausdruck als
Suchmuster verwenden.

Die alternativen Formen der Funktionen lauten:

INSTR([start],text$, search$ [,size])
LINSTR(text%(),search$ [,start] [,size]

In beiden Fällen führt die Angabe des Größenparameters dazu, dass die Firmware die Suchzeichenfolge als
regulären Ausdruck interpretiert. Der Größenparameter ist eine Gleitkomma- oder Ganzzahlvariable, die von
der Firmware verwendet wird, um die Größe einer übereinstimmenden Zeichenfolge zurückzugeben. Wie in
MMBasic implementiert, musst du die zurückgegebenen Start- und Größenwerte auf die MID$-Funktion
anwenden, um die übereinstimmende Zeichenfolge zu extrahieren. z. B.

IF start THEN match$=MID$(text$,start,size) ELSE match$=”” ENDIF
Die Syntax regulärer Ausdrücke kann je nach Implementierung leicht variieren. Dieser Anhang ist eine
Zusammenfassung der Syntax und der unterstützten Operationen, die in der MMBasic-Implementierung
verwendet werden.

Hinweis: Die Verwendung der Syntax regulärer Ausdrücke mit OPTION ESCAPE sollte möglichst vermieden
werden, da es sonst leicht zu Verwirrung kommen kann!

Anker

^ Beginn der Zeichenfolge

$ Ende der Zeichenfolge

\b Wortgrenze

\B Keine Wortgrenze

Qualifizierer

* 0 oder mehr (nicht maskiert)

+ 1 oder mehr

? 0 oder 1

{3} Genau 3

{3,} 3 oder mehr

{,5} 5 oder weniger

{3,5\} 3,4 oder 5

Gruppen und Bereiche

(a|b|c) a oder b oder c

(…) Gruppe

[abc] Bereich (a oder b oder c)

[^abc] Nicht (a oder b oder c]

[a-q] Kleinbuchstaben a bis q

[A-Q] Großbuchstaben A bis Q

[0-7] Ziffern von 0 bis 7

Zeichenklassen

\w Ziffern, Buchstaben und _

\W Nicht-Alphabete

\s Leerzeichen \t \f \r \n \v
Leerzeichen

\S Nicht-Leerzeichen

\d Ziffern

\D Nicht-Ziffern

\xXX hexadezimal codiertes Byte

Escape-Zeichen, die du brauchst, um normale
Zeichen zu finden

\^ für ^ (Caret)

\. für die Übereinstimmung mit . (Punkt)

* für * (Sternchen)

\$ für $ (Dollarzeichen)

\[passt zu [(linke Klammer)

\\ passt auf \ (Backslash)

\? passt auf ? (Fragezeichen)

\{ für die Übereinstimmung mit { (linke
geschweifte Klammer)

\} passt auf } (rechte geschweifte Klammer)

\| passt auf | (Vertikalstrich)

\(passt auf ((linke Klammer)

\) passt auf) (rechte Klammer)

\ + entspricht + (Pluszeichen)

Übereinstimmungsregeln

Nicht-Sonderzeichen passen zu sich selbst

. passt zu jedem Zeichen

 Eine Wortgrenze ist am Anfang oder Ende
einer

einer Zeichenfolge oder dort, wo ein \w-Zeichen
ein

\W-Zeichen daneben steht.

Einschränkungen

Anker innerhalb einer Gruppe werden nicht
unterstützt.

PicoMite Benutzerhandbuch Seite 245

Beispielsweise werden (^hello) oder (hello$)
nicht wie erwartet mit „hello” am Anfang oder
Ende der Zeile abgeglichen.

Anker außerhalb der Gruppe sind aber okay.
Zum Beispiel passen ^(hello) oder (hello)$

Beispielausdruck, der mit einer IP-Adresse übereinstimmt.
„[\d]+\.[\d]+\.[\d]+\.[\d]+“

Verwendung regulärer Ausdrücke mit OPTION ESCAPE
Wenn ein regulärer Ausdruck direkt in die Funktion INSTR oder LINSTR eingebettet ist, wird jede Syntax, die
das Escape-Zeichen „\“ verwendet, korrekt verarbeitet, ohne dass der Backslash weiter escaped werden muss,
egal ob OPTION ESCAPE verwendet wird oder nicht. z. B.

 ? instr("test123","\d",size)

Die Funktionen INSTR / LINSTR deaktivieren OPTION ESCAPE vorübergehend, während der reguläre
Ausdruck gelesen wird.

Wenn der reguläre Ausdruck aber als String-Variable übergeben wird und OPTION ESCAPE aktiviert ist,
wenn du den regulären Ausdruck der Variable zuweist, musst du jeden Backslash im regulären Ausdruck mit
einem Escape-Zeichen versehen. z. B.

s$=”\\d”
? instr("test123",s$,size)

Seite246 PicoMite-Benutzerhandbuch

Anhang F – Das PIO-Programmierpaket
Das PIO-Programmierpaket
Einführung in das PIO
Der RP2040 und der RP2350 haben viele eingebaute Peripheriegeräte wie PWM, UART, ADC und SPI. Mit
PIOs kann man spezielle Funktionen/Peripheriegeräte wie schnelle serielle Datenschnittstellen und Bitströme
hinzufügen.

PIOs kann man sich als abgespeckte, hochspezialisierte CPU-Kerne vorstellen. Der RP2040 hat zwei PIO-
Blöcke, während der RP2350 drei Blöcke hat. MMBasic nennt sie PIO0, PIO1 und PIO2, genau wie in der
Raspberry Pi-Dokumentation. Die PIOs laufen komplett unabhängig vom Hauptsystem und voneinander und
sind extrem schnell, mit einem Durchsatz von bis zu 32 Bit pro Taktzyklus.

PIOs setzen Zustandsmaschinen um. Bevor eine Zustandsmaschine ihr Programm ausführen kann, muss das
Programm in den PIO-Speicher geschrieben und die Zustandsmaschine konfiguriert werden.

Dieser Anhang beschreibt die Unterstützung, die MMBasic bei der Verwendung von PIOs bieten kann. Er
enthält keine Erklärung, wie man PIO-Zustandsmaschinenprogramme schreibt. Um besser zu verstehen, wie
diese funktionieren, lies den folgenden Thread „PIO explained PICOMITE” im Forum von thebackshed.com:
https://www.thebackshed.com/forum/ViewTopic.php?FID=16&TID=15385

Verfügbarkeit von PIOs
PicoMite-
Plattform

I2S-
Audio

PIO0 PIO1 PIO2

2040  

2040 ja X 

2350   

2350 Ja   X

2040 VGA X 

2040 VGA Ja X 

2350 VGA X  

2350 VGA Ja X  X

2350 HDMI   

2350 HDMI Ja   X

WebMite2040  X

WebMite2040 Ja X X

WebMite2350  X 

WebMite2350 Ja  X X

 = VERFÜGBAR X = NICHT
VERFÜGBAR

Überblick über PIO
Ein einzelner PIO-Block hat vier unabhängige Zustandsmaschinen. Alle vier Zustandsmaschinen teilen sich
einen einzigen 32-Befehls-Programmbereich des Flash-Speichers. Dieser Speicher kann vom Hauptsystem nur
beschrieben werden, hat aber vier Leseports, einen für jede Zustandsmaschine, sodass jede unabhängig mit
ihrer eigenen Geschwindigkeit darauf zugreifen kann. Jede Zustandsmaschine hat ihren eigenen
Programmzähler.

Jede Zustandsmaschine hat außerdem zwei 32-Bit-„Scratchpad“-Register, X und Y, die als temporäre
Datenspeicher genutzt werden können.

Der Zugriff auf die E/A-Pins erfolgt über ein Eingabe-/Ausgabe-Zuordnungsmodul, das auf 32 Pins zugreifen
kann (bei RP2040 jedoch auf 30 beschränkt). Alle Zustandsmaschinen können unabhängig voneinander und
gleichzeitig auf alle Pins zugreifen.

PicoMite Benutzerhandbuch Seite 247

MMBasic kann Daten in das Eingangsende eines 4-Wort-32-Bit-breiten TX-FIFO-Puffers schreiben. Die
Zustandsmaschine kann dann PULL verwenden, um das Ausgangswort des FIFO in das OSR (Output Shift
Register) zu verschieben. Sie kann auch OUT verwenden, um jeweils 1-32 Bits vom OSR in das Ausgangs-
Mapping-Modul oder andere Ziele zu verschieben. Mit AUTOPULL können Daten automatisch gezogen
werden, bis der TX-FIFO leer ist oder einen voreingestellten Pegel erreicht.

MMBasic kann Daten vom Ausgangsende eines 4-Wort-RX-FIFO-Puffers mit einer Breite von 32 Bit lesen.
Die Zustandsmaschine kann dann IN verwenden, um jeweils 1 bis 32 Datenbits vom Eingangsabbildungsmodul
in das ISR (Input Shift Register) zu verschieben. Anschließend kann sie PUSH verwenden, um den Inhalt des
ISR in den FIFO zu verschieben. Mit AUTOPUSH können Daten automatisch verschoben werden, bis der RX-
FIFO voll ist oder einen voreingestellten Pegel erreicht.

Die FIFO-Puffer können neu konfiguriert werden, um einen unidirektionalen 8-Wort-32-Bit-FIFO in einer
Richtung zu bilden. Die Puffer ermöglichen die Übertragung von Daten zu und von den Zustandsmaschinen,
ohne dass das System oder die Zustandsmaschine aufeinander warten müssen.

Jede der vier Zustandsmaschinen im PIO hat vier zugehörige Register:

• CLKDIV ist der Taktteiler, der über einen 16-Bit-Ganzzahlteiler und einen 8-Bit-Bruchteilteiler
verfügt. Dieser legt fest, wie schnell die Zustandsmaschine läuft. Er teilt den Hauptsystemtakt herunter.

• EXECCTRL enthält Informationen zur Steuerung der Übersetzung und Ausführung des
Programmspeichers.

• SHIFTCTRL steuert die Anordnung und Verwendung der Schieberegister.

• PINCTRL steuert, welche und wie die GPIO-Pins verwendet werden.

Die vier Zustandsmaschinen eines PIO haben gemeinsamen Zugriff auf seinen Block mit 8 Interrupt-Flags.
Jede Zustandsmaschine kann jedes Flag verwenden. Sie können sie setzen, zurücksetzen oder auf ihre
Änderung warten. Auf diese Weise können sie bei Bedarf synchron laufen. Die unteren vier Flags sind auch für
das Hauptsystem zugänglich, sodass der PIO von MMBasic aus gesteuert werden kann oder Interrupts
zurückgeben kann.

DMA kann verwendet werden, um Informationen über seinen FIFO vom Speicher des RP2040 zum und vom
PIO-Block zu übertragen.

Ein PIO hat neun mögliche Programmierbefehle, aber es kann viele Variationen für jeden einzelnen geben.
Zum Beispiel kann Mov bis zu 8 Quellen, 8 Ziele und 3 Prozessoperationen während des Kopiervorgangs
haben, mit optionalen Verzögerungs- und/oder Side-Set-Operationen!

• Jmp Springe zu einer absoluten Adresse im Programmspeicher, wenn eine Bedingung wahr ist (oder
sofort).

• Warten Verzögert den Betrieb der Zustandsmaschine, bis eine Bedingung erfüllt ist.

• In Verschiebt eine Anzahl von Bits aus einer Quelle in den ISR.

• Aus Verschiebt eine Anzahl von Bits aus dem OSR an ein Ziel.

• Push Schiebt den Inhalt des ISR als einzelnes 32-Bit-Wort in den RX-FIFO.

• Pull Lade ein 32-Bit-Wort aus dem TX-FIFO in den OSR.

• Mov Kopiere Daten von einer Quelle zu einem Ziel.

• Irq Setzt oder löscht ein Interrupt-Flag.

• Set Daten sofort an einen Zielort schreiben.

Alle Befehle sind 16-Bit-Befehle und enthalten sowohl den Befehl als auch alle damit verbundenen Daten. Alle
Befehle werden in einem Taktzyklus ausgeführt, es ist jedoch möglich, zwischen einem Befehl und dem
nächsten eine Verzögerung von mehreren Leerlauf-Taktzyklen einzufügen.

Außerdem gibt's eine Funktion namens „Side-Set”, mit der ein Wert in einige vordefinierte Ausgangspins
geschrieben werden kann, während ein Befehl aus dem Speicher gelesen wird. Das ist für das Programm nicht
sichtbar.

Programmierung von PIO
Die PicoMite-Firmware programmiert den PIO-Zustandsmaschinen-Speicher mit einer von drei Methoden.
Jede Methode wird anhand eines Beispiels mit genau demselben Programm erklärt, das einen der GPIO-Pins
des Raspberry Pi Pico umschaltet. Welcher GPIO-Pin umgeschaltet wird, hängt von der Konfiguration ab, nicht
vom Programm selbst.

Seite248 PicoMite-Benutzerhandbuch

PIO ASSEMBLE

Dieser Befehl wird verwendet, um mit dem integrierten Assembler das Programm aus Mnemoniken zu
generieren und es dann direkt in den PIO-Speicher zu schreiben.

PIO ASSEMBLE 1,".program test" 'Ein Programm muss einen Namen haben
PIO ASSEMBLE 1,".line 0" 'das Programm bei Zeile 0 starten
PIO ASSEMBLE 1,"SET PINDIRS,1" 'GPIO-Zeile auf Ausgabe setzen
PIO ASSEMBLE 1, „label:“ 'Label namens „label” definieren
PIO ASSEMBLE 1,"SET PINS,1" 'GPIO-Pin auf High setzen
PIO ASSEMBLE 1,"SET PINS,0" 'GPIO-Pin auf niedrig setzen
PIO ASSEMBLE 1, „JMP label” 'Springe zu „label”
PIO ASSEMBLE 1, „.end program list” 'Programm beenden, list=Ergebnis
anzeigen

Der Assembler lässt auch ein besser lesbares Format wie dieses zu

PIO ASSEMBLE 1, „.program test” 'Ein Programm muss einen Namen haben
.Zeile 0 'das Programm beginnt bei Zeile 0
 PINDIRS,1 einstellen 'GPIO-Leitung auf Ausgang setzen
.LABEL label: 'Definiere eine Bezeichnung namens „label”
 SET PINS,1 'GPIO-Pin auf High setzen
 PINS,0 SET 'GPIO-Pin auf niedrig setzen
 JMP label 'Springe zu „label”
.end program list 'Programm beenden, list=Ergebnis anzeigen

PIO-PROGRAMMZEILE

Mit diesem Befehl kannst du 16-Bit-Werte für einzelne Zeilen (Speicherplätze) im PIO-Speicher
programmieren.

PIO PROGRAM LINE 1,0,&hE081 'Pin-Ausgang festlegen
PIO PROGRAM LINE 1,1,&hE001 'Pin hoch setzen
PIO PROGRAM LINE 1,2,&hE000 'Pin niedrig setzen
PIO PROGRAM LINE 1,3,&h0001 'JMP zu Zeile 1

PIO PROGRAM

Dieser Befehl schreibt alle 32 Zeilen in einem PIO aus einem Array. Das ist nützlich, wenn ein PIO-Programm
debuggt wurde. Es ist super kompakt.

DIM a%(7)=(&h0001E0000E001E081,0,0,0,0,0,0,0)
PIO-PROGRAMM 1,a%()

PIO konfigurieren
Die PicoMite-Firmware kann jede Zustandsmaschine einzeln konfigurieren. Die Konfiguration ermöglicht es,
dass zwei Zustandsmaschinen genau dieselben Programmzeilen ausführen (z. B. eine SPI-Schnittstelle), aber
mit unterschiedlichen GPIO-Pins und unterschiedlichen Geschwindigkeiten arbeiten. Es gibt mehrere
Konfigurationsfelder.

FREQUENZ

Die PicoMite-Firmware enthält für jedes Konfigurationsfeld eine Standardkonfiguration, außer für die
Frequenz. Die Frequenz wird durch einen 16-Bit-CLKDIV-Teiler vom ARM-Taktgeber eingestellt. Beispiel:
Wenn OPTION CPUSPEED 126000 eingestellt ist, kann die PIO mit Geschwindigkeiten zwischen 126 MHz
und 1,922 kHz (126000000 / 65536) laufen. Beachte, dass höhere CPU-Geschwindigkeiten (Übertaktung) sich
direkt auf die Frequenz der Zustandsmaschine auswirken.

PIN-STEUERUNG

Die PicoMite-Firmware legt die GPIO-Pins standardmäßig für die Verwendung durch MMBasic fest. Damit die
PIO die Kontrolle über einen GPIO-Pin übernehmen kann, muss MMBasic ihn wie unten gezeigt der PIO
zuweisen.

SETPIN GPxx,PIOx (z. B. SETPIN gp0,pio1)

Eine Zustandsmaschine kann den Zustand eines Pins SETZEN (SET ist eine Zustandsmaschinenanweisung),
aber auch serielle Daten mit der OUT-Anweisung an einen oder mehrere GPIO-Pins ausgeben. Oder sie kann
serielle Daten mit der IN-Anweisung lesen. Und GPIO-Pins können als Nebeneffekt einer beliebigen
Zustandsmaschinenanweisung (SIDE SET) gesetzt werden. Für jede Schnittstellenmethode können der
Zustandsmaschine unterschiedliche Pins zugeordnet werden.

PicoMite Benutzerhandbuch Seite 249

Wichtig zu wissen ist, dass diese Befehle auf aufeinanderfolgende Pins wirken. Das heißt, es gibt einen Bereich
von Pins, die gesteuert werden können, beginnend mit der niedrigsten GPx-Pin-Nummer (z. B. GP0), und die
benachbarten Pins können mit einbezogen werden (insgesamt bis zu 5 Pins). GP0, GP1, GP2 ist also ein
gültiger Satz von IO-Pins. GP0, GP1, GP6 ist es nicht. Beachte das beim Entwerfen einer PIO-Anwendung.

Die Zuweisung von GPIO-Pins zu einer Zustandsmaschine erfolgt über die PIO-Hilfsfunktion PINCTRL:

PIO(PINCTRL a,b,c,d,e,f,g)
a/ die Anzahl der SIDE SET-Pins (0...5), SIDE SET kann 5 Pins gleichzeitig schreiben
b/ die Anzahl der SET-Pins (0...5), SET kann 5 Pins gleichzeitig schreiben
c/ die Anzahl der OUT-Pins (0...31), OUT kann 32 Pins gleichzeitig schreiben
d/ der niedrigste Pin für IN-Pins (GP0.....GP31) IN kann bis zu 32 Pins gleichzeitig lesen
e/ der niedrigste Pin für SIDE SET (GP0.....GP31)
f/ der niedrigste Pin für SET (GP0.....GP31)
g/ der niedrigste Pin für OUT (GP0.....GP31)

Die Bereiche für die verschiedenen Funktionen (SET/OUT/SIDESET/IN) können sich überschneiden, identisch
sein oder nebeneinander liegen.

AUSFÜHRUNGSSTEUERUNG

Das Ausführungssteuerungsregister EXECCTRL konfiguriert den Programmablauf. Es gibt ein Feld, das einen
GPIO-Pin mit einem bedingten Sprung (JMP-Befehl) verbindet, und Felder, die die Zeilenadresse des
Hauptprogrammschleifenbeginns (.WRAP TARGET) und -endes (.WRAP) enthalten.

Wenn wir wollen, dass sich der Programmablauf in Abhängigkeit vom Zustand eines GPIO-Pins ändert, wird
ein JMP-PIN verwendet. Der spezifische Pin wird in der Ausführungssteuerungskonfiguration zugewiesen (es
kann nur 1 Pin pro Zustandsmaschine geben) und der JMP findet nur statt, wenn der Pin hoch ist.

Das Zustandsmaschinenprogramm startet am Anfang und läuft bis zum Ende. Im obigen Demoprogramm läuft
das Programm „ ” mit einer (bedingungslosen) JMP-Anweisung vom Ende zum Anfang. Eine Alternative zur
Verwendung der JMP-Anweisung besteht darin, den Anfang der Schleife (WRAP TARGET = Zeile 1) und das
Ende der Schleife (WRAP = Zeile 2) zu definieren und die Zustandsmaschine so zu konfigurieren, dass sie nur
die dazwischen liegenden Anweisungen ausführt. Der JMP-Befehl in Zeile 3 wird überflüssig, wenn
WRAP/WRAP TARGET verwendet wird.

PIO(EXECCTRL a,b,c)
a/ der GPIO-Pin für bedingtes JMP (z. B. GP0)
b/ die WRAP TARGET-Zeilennummer (z. B. 1)
c/ die WRAP-Zeilennummer (z. B. 2)

SHIFT CONTROL

Die IN- und OUT-Befehle verschieben Daten vom FIFO-Register zu den GPIO-Pins. Zwischen MMBasic und
dem PIO können 32-Bit-Wörter ausgetauscht werden. Da sowohl die ARM-Kerne als auch die PIO-
Mikrocontroller unabhängig voneinander arbeiten, werden die Daten über FIFOs ausgetauscht. Der ARM
(MMBasic) legt die Daten im FIFO ab, der PIO liest sie aus. Dabei wird der TX-FIFO verwendet. Umgekehrt
wird der RX-FIFO genutzt. Die FIFOs sind normalerweise 4 Wörter tief, können aber auch als einzelner 8
Wörter tiefer RX- oder TX-FIFO konfiguriert werden.

Der PIO kann Daten im RX-FIFO von der MSB-Seite oder von der LSB-Seite „verschieben”. Das wird mit
dem IN SHIFTDIR-Bit eingestellt. Ähnlich verhält es sich mit dem OUT SHIFTDIR-Bit für OUT-Daten. Die
Autopull- und Autopush-Flags bestimmen in Kombination mit den Pull- und Push-Schwellenwerten, wann der
FIFO aufgefüllt wird.

Im RP2350 können die FIFOs auch als einzelne Register genutzt werden, was eine flexiblere Kommunikation
zwischen MMBasic und den Zustandsmaschinen ermöglicht. Das wird durch FJOIN_RX_GET und
FJOIN_RX_PUT im SHIFTCTRL-Register gemacht.

PIO(SHIFTCTRL a,b,c,d,e,f,g,h)
a/ Push-Schwelle (1..31 Bits werden vor autoPUSH in ISR verschoben)
b/ Pull-Schwelle (1..31 Bits werden vor autoPULL aus OSR verschoben)
c/ AutoPush (1 = automatisches Drücken zulassen)
d/ autopull (1 = automatisches Ziehen zulassen)
e/ IN-Shiftdir (1 = MSB verschieben, 0 = LSB verschieben)
f/ OUT-shiftdir (1 = MSB verschieben, 0 = LSB verschieben)
g/ fjoin_tx (TX- und RX-FIFO zu 1 RX-FIFO verbinden)
h/ fjoin_rx (TX- und RX-FIFO zu 1 TX-FIFO verbinden)
i/ fjoin_rx_get (1=ARM schreibt einzelne RX-FIFO-Register, nur 2350)
j/ fjoin_rx_put (1=ARM liest einzelne RX-FIFO-Register, nur 2350)

Seite250 PicoMite-Benutzerhandbuch

SCHREIBEN DER ZUSTANDSMASCHINENKONFIGURATION

Die Konfiguration der Zustandsmaschine wird mit dem folgenden Befehl geschrieben:

PIO INIT MACHINE a,b,c,d,e,f,g
a/ die PIO (0,1 oder 2(nur 2350))
b/ die Zustandsmaschinen-Nummer (0...3)
c/ Frequenz (CPUSPEED/65536...CPUSPEED in Hz)
d/ Pinsteuerungswert (PIO(PINCTRL))
e/ Exekutionssteuerungswert (PIO(EXECCTRL......))
f/ Schaltsteuerungswert (PIO(SHIFCTRL......))
g/ Startadresse (0....31, die Zeile, in der die Zustandsmaschine mit der

Ausführung beginnt, kann eine Bezeichnung sein)

SCHREIBEN DER ZUSTANDSMASCHINENKONFIGURATION IN KOMPAKTER FORM
Eine Zustandsmaschinenkonfiguration wird mit diesem einzigen Befehl konfiguriert und geschrieben:

PIO CONFIGURE a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,aa,bb,cc
a/ pio (0,1 oder 2 (nur 2350))
b/ sm (0...3)
c/ Frequenz (CPUSPEED/65535 bis zu CPUSPEED in Hz)
d/ Startadresse (0..31)
e/ Seiteneinstellungsbasis (SIDE SET-Bereich beginnt mit GPx)
f/ Seiten-Set-Nr. (0..5...Auswirkung auf DELAY-Bereich)
g/ sidesetout (1 = oben definierte Pins automatisch als Ausgang festlegen)
h/ setbase (SET-Bereich beginnt mit GPy)
i/ setno (0...5)
j/ Ausrichtung (1=die oben definierten Pins automatisch als Ausgang

festlegen)
k/ outbase (OUT/MOV-Bereich beginnt mit GPz)
l/ outno (0...5)
m/ outout (1 = oben definierte Pins automatisch als Ausgang festlegen)
n/ inbase (IN-Bereich beginnt bei GPxx)
o/ jmppin (Bedingter JMP-Pin ist GPyy)
p/ wraptarget (0..31 = Zeilennummer für WRAP TARGET)
q/ wrap (0..31 = Zeilennummer für WRAP)
r/ sideenable (1 = nur Pins explizit aktualisieren, wenn side set in der

Anweisung steht)
s/ sidepindir (1 = Side-Set ändert die Pin-Richtung, nicht den Pin-Status)
t/ pushthreshold (1..31 Bits werden vor autoPUSH in ISR verschoben)
u/ pullthreshold (1..31 Bits werden vor autoPULL aus OSR herausgeschoben)
v/ autopush (1 = automatisches Drücken zulassen)
w/ autopull (1 = automatisches Ziehen zulassen)
x/ inshiftdir (1 = Richtung MSB→LSB verschieben, 0 = Richtung

LSB→MSB verschieben)
y/ outshiftdir (1 = MSB→LSB verschieben, 0 = LSB→MSB verschieben)
z/ joinrxfifo (1 = RX-FIFO ist 8 tief, TX-FIFO = 0
aa/ jointxfifo (1 = TX-FIFO ist 8 tief, RX-FIFO = 0
bb/ joinrxfifoget (1 = RX-FIFO ändert sich zu 4 lesbaren Registern (nur 2350)
cc/ joinrxfifoput (1 = RX-FIFO ändert sich zu 4 beschreibbaren Registern (nur

2350)

STARTEN UND STOPPEN EINER ZUSTANDSMASCHINE

Sobald die PIO konfiguriert ist, kannst du die Zustandsmaschine mit folgenden Befehlen starten und stoppen:

PIO START a,b
PIO STOP a,b

a/ die PIO-Nummer (0,1 oder 2 (nur 2350))
b/ die Zustandsmaschine (0...3)

Beachte, dass eine Zustandsmaschine beim Stoppen genau an der Stelle stoppt, an der sie sich gerade befindet.
Um die Zustandsmaschine neu zu starten, solltest du zuerst PIO INIT MACHINE ausführen.

BEISPIELPROGRAMM 1

Eine komplette PIO-Implementierung, die einen GPIO-Pin umschaltet, kann in MMBasic wie unten gezeigt

PicoMite Benutzerhandbuch Seite 251

gemacht werden. Schließ einen Summer an GP0 an und hör dir den von der PIO erzeugten Ton an.

'ARM von GP0 trennen
setpin gp0,pio1 'GP0 als Ausgangspin für PIO 1 verwenden

'PIO-Programm verwendet
'0 E081 'Pin-Ausgang einstellen
'1 E001 'Pin hoch setzen
'2 E000 'Pin niedrig setzen
'3 0001 'jmp 1

'Programm pio 1 mit einem Array, um das Programm in den PIO-Speicher zu
schreiben, und starten
Dim a%(7)=(&h0001E000E001E081,0,0,0,0,0,0,0)
PIO-Programm 1,a%()

'PIO 1-Zustandsmaschine 0 konfigurieren
p=Pio(pinctrl 0,1,,,,gp0,) 'SET definiert die Verwendung von 1 Pin, und zwar
GP0
f=3100 '3051 Hz ist die niedrigste Frequenz CPUSPEED
200000
PIO-Initialisierungsmaschine 1,0,f,p „Standardwerte für execctrl, shiftctrl,

start verwenden ‘Adresse (=0)

'PIO 1-Zustandsmaschine starten 0
PIO starten 1,0

Beachte, dass das MMBasic-Programm beendet wird, der Summer aber weiterläuft. PIO ist unabhängig von der
ARM-CPU und läuft weiter, bis es gestoppt wird. Durch Aufrufen des MMBasic-Editors wird PIO gestoppt.

FIFOs
MMBasic und PIO tauschen Infos über FIFOs aus. Die PIOs schieben Daten in den RX-FIFO (MMBasic ist der
Empfänger) oder ziehen Daten aus dem TX-FIFO (MMBasic ist der Sender).

Wenn die PIO Daten aus dem FIFO abruft, werden die Daten an das OSR (Output Shift Register) übertragen,
von wo aus sie verarbeitet werden können. Die PIO kann die Daten aus dem ISR (Input Shift Register) in den
FIFO schieben. Zusätzlich verfügt die PIO über zwei Register X und Y, die zum Speichern oder Zählen
verwendet werden können. Die PIO kann nicht addieren, subtrahieren oder vergleichen.

Datenfluss:

MMBasic -> FIFO -> OSR -> PIO (oder Pins)
PIO (oder Pins) -> ISR -> FIFO -> MMBasic

MMBasic kann Daten in den TX-FIFO schreiben und Daten aus dem RX-FIFO lesen, indem es Folgendes
verwendet:

PIO READ a,b,c,d
PIO WRITE a,b,c,d

a/ PIO-Nummer (0,1 oder 2 (nur 2350))
b/ Zustandsnummer (0...3)
c/ Anzahl der 32-Bit-Wörter (1...4)
d/ Name der ganzzahligen Variablen (z. B. variable% oder array%())

PIO CLEAR löscht alle PIO-FIFOs, genauso wie PIO START und PIO INIT MACHINE.

Das MMBAsic-Programm muss nicht auf das Erscheinen von Daten im FIFO warten, da dem RX-FIFO ein
Interrupt zugewiesen werden kann. Die MMBasic-Interrupt-Routine kann die Daten aus dem FIFO holen.

Ähnlich verhält es sich mit dem TX-Interrupt, bei dem MMBasic einen Interrupt erhält, wenn Daten für den
TX-FIFO benötigt werden.

PIO INTERRUPT a,b,c,d
a/ PIO (0,1 oder 2 (nur 2350))
b/ Zustandsmaschine (0...3)
c/ Name des RX-Interrupt-Handlers (z. B. „myRX_Interrupt” oder 0 zum Deaktivieren)
d/ Name des TX-Interrupt-Handlers (z. B. „myTX_Interrupt” oder 0 zum Deaktivieren)

Seite252 PicoMite-Benutzerhandbuch

BEISPIELPROGRAMM 2

Das folgende Programm erklärt viele der oben vorgestellten MMbasic-Funktionen und -Befehle. Das
Programm liest einen NES-Controller (SPI), der an den Raspberry Pi Pico angeschlossen ist. Der NES-
Controller besteht aus einem HEF4021-Schieberegister, das mit 8 Druckschaltern verbunden ist.

Das Programm nutzt: wrap und wrap target, IN, side set und delay, PUSH, PIO READ. GP0 und GP1 sind in
SET für die Pin-Richtung und in side set für kompakten Code.

Die Verkabelung ist wie im Code definiert:

'ARM von GP0/1/2 trennen
 setpin gp0,pio1 'Takt ausgeben
 setpin gp1,pio1 'Auslesen
 Pin GP2, PIO1 setzen 'Daten rein

'PIO-Programm

PIO assemble 1,".program NES" 'Ein Programm braucht einen Namen
.Seite setzen 2 '2 Bits für Seitensatz, 3 für

Verzögerung verwenden
Zeile 0 'Startcode in Zeile 0
 SET pindirs,&b11 'GP0,GP1-Ausgang einstellen, Seite GP0,GP1

niedrig
.Ziel umschließen 'Ziel umschließen = Anfang der Schleife
 IN null,32 Seite 2 'set ISR auf 0, GP1 hoch (laden), GP0 niedrig
 SET X,7 Seite 0 'X-Zähler auf 7 setzen, GP0,GP1 niedrig
.label Schleife: 'innere Schleifenbezeichnung
 IN Pins,1 Seite 0 '1 Datenbit verschieben, GP0,GP1 niedrig

halten
 JMP X-- Schleifenseite 1 'jmp zu Schleife, dec. X, GP0

‘hoch(Takt)
 PUSH Seite 0 [7] 'jetzt X=0, Ergebnis in FIFO schieben,

Verzögerung 7
.wrap" 'äußere Schleife beenden, wiederholen
.end Programmliste 'Ende des Programms, Ergebnis auflisten

'pio1 einrichten
 p=Pio(pinctrl 2,2,,gp2,gp0,gp0,)'GP0,GP1 aus (SET und SIDESET), GP2 IN
 f=1e5 '100 kHz
 s=PIO(shiftctrl 0,0,0,0,0,0) 'Verschiebung von LSB für IN (und OUT)
 e=PIO(execctrl gp0,PIO(.wrap target),PIO(.wrap)) ‘Wrap und Wrap-Ziel

'Konfiguration schreiben
 PIO init machine 1,0,f,p,e,s,0 'bei Zeile 0 starten

'PIO1-Code starten
 PIO start 1,0

'Die gelesenen Daten in MMBasic überprüfen und ausgeben
 dim d%
 do
 pio lesen 1,0,1,d%
 Ausgabe bin$(d%)
 pause 200
 Schleife
 END

DMA zu und von den FIFOs
So funktioniert DMA:

Beim Lesen aus dem FIFO wartet der DMA-Controller, bis Daten im FIFO sind, und wenn sie da sind, schickt
er sie in den Prozessorspeicher. Bei jedem Lesevorgang verschiebt er den Zeiger im Prozessorspeicher weiter,
damit er zum Beispiel ein Array nach und nach füllen kann, sobald die Daten verfügbar sind.

Beim Schreiben in den FIFO schreibt der DMA-Controller Daten aus dem Prozessorspeicher automatisch in

PicoMite Benutzerhandbuch Seite 253

den FIFO und wartet, wenn der FIFO voll ist. So können Daten in einem Array vorbereitet werden, und der
DMA-Controller überträgt diese Daten so schnell, wie es das PIO-Programm braucht, an den PIO-FIFO.

DMA kann ein 32-Bit-Wort, ein 16-Bit-Short oder ein 8-Bit-Byte übertragen. Beim Einrichten von DMA musst
du die Größe der Übertragung und die Anzahl der durchzuführenden Übertragungen angeben. Da jede
Übertragung den Speicherzeiger um 1, 2 oder 4 Bytes erhöht, muss MMBasic mit den im Speicher gepackten
Daten arbeiten und nicht mit den 64 Bit, die für MMbasic-Ganzzahlen und -Gleitkommazahlen verwendet
werden. Zum Glück hat MMBasic zwei Befehle, MEMORY PACK und MEMORY UNPACK, die das sehr
effizient machen, aber es geht auch mit Standard-BASIC-Arithmetik.

Der DMA kann so konfiguriert werden, dass er Daten wiederholt in einen Speicherbereich (einen Ringpuffer)
ein- oder aus diesem ausliest.

Die Befehle lauten:

PIO DMA RX a, b, c, d, e, f, g
PIO DMA TX a, b, c, d, e, f, g
Wobei: a = pio (0,1 oder 2 (nur 2350))

b = Zustandsmaschine (0...3)
c = nbr (Anzahl der zu übertragenden Wörter)
d = data%() (Name des Integer-Arrays)
e = completioninterrupt (wohin nach Abschluss, optional)
f = Übertragungsgröße (8 = 16 = 32, optional)
g = loopbackcount (verwendet data%() als Ringpuffer, optional, loopbackcount =

2^n)

Der DMA startet die Zustandsmaschine automatisch, und es ist kein PIO-START-Befehl nötig. Bevor du die
Übertragung startest, solltest du aber sicherstellen, dass ein neues PIO INIT MACHINE durchgeführt wird,
damit die Zustandsmaschine an der gewünschten Startadresse startet.

Wenn ein Ringpuffer verwendet wird, sind spezielle Vorbereitungen erforderlich:

PIO MAKE RING BUFFER a, b
Wobei: a = Name des Integer-Puffers

b = Größe des Arrays in Bytes

Beispiel:
DIM packed% Achtung: KEINE Klammern()
PIO MAKE RING BUFFER packed%,4096

packed% ist dann ein Integer-Array, das 4096/8 = 512 Integer-Werte enthält

Das kann dann vom DMA für einen Loopback-Zähler mit DMA von 1024 32-Bit-Wörtern, 2048 16-Bit-Shorts
oder 4096 8-Bit-Bytes verwendet werden.

BEISPIELPROGRAMM 3

Dieses Programm bringt alles zusammen und nutzt DMA, um 128 Samples aus dem PIO RX FIFO zu lesen.
Zur Demonstration sind GP0 bis GP5 Ausgänge von 3 PWMS und werden gleichzeitig vom PIO als 6-Kanal-
Logikanalysator oder Oszilloskop abgetastet. Die 128 Samples werden als Wellenformen an den seriellen Port
gesendet.

Dieses Logikanalysatorprogramm demonstriert auch PIO DMA RX, MEMORY UNPACK und die
Verwendung von Puffern. Es verwendet PWMs, um zu Demonstrationszwecken ein Testsignal auf gp0..gp5 zu
erzeugen. Dieselben Pins werden vom Logikanalysator gelesen und an die Konsole ausgegeben.

Um diesen Logikanalysator zu nutzen, musst du die ersten 14 Zeilen auskommentieren.

'Erzeugt ein 50-Hz-3-Phasen-Testsignal, um den DMA auf 6 GPIO-Pins zu zeigen.
SetPin gp0,pwm 'CH 0a
SetPin gp1,pwm 'CH 0b
SetPin gp2,pwm 'CH 1a
SetPin gp3,pwm 'CH 1b
SetPin gp4,pwm 'CH 2a
SetPin gp5,pwm 'CH 2b

Fpwm = 50: PW = 100 / 3
PWM 0, Fpwm, PW, PW - 100, 1, 1
PWM 1, Fpwm, PW, PW - 100, 1, 1
PWM 2, Fpwm, PW, PW - 100, 1, 1

Seite254 PicoMite-Benutzerhandbuch

PWM-Synchronisation 0, 100/3, 200/3

------------------------------- LA-Code PIO --------------------------
'PIO-Code zum Abtasten von GP0..GP6 als elementarer Logikanalysator
PIO löschen 1

'In diesem Programm liest der PIO GP0..GP5 mit Brute-Force
'und schiebt die Daten in den FIFO. Die Taktrate bestimmt die
'Abtastrate. Es gibt 2 Befehle pro Zyklus
'mit 10000/2 / 50 = 100 Abtastungen pro 50-Hz-Zyklus.

PIO assemble 1, „.program push“
 .Zeile 0
 .wrap Ziel
 IN-Pins,6 „6 Bits von GP0..GP5 holen
 PUSH-Block 'Daten schieben, wenn FIFO Platz hat
 .wrap
.end Programmliste

'Konfiguration
f=1e4 'PIO läuft mit 10 kHz
p=Pio(pinctrl 0,0,0,gp0,,,) 'IN-Basis = GP0
e=Pio(execctrl gp0,PIO(.wrap target),PIO(.wrap)) 'Wrap 1 bis 0, gp0 ist

 „Standard
s=Pio(shiftctrl 0,0,0,0,0,0) 'Verschiebung durch LSB, Ausgang wird nicht
benutzt

'Konfiguration schreiben, Geschwindigkeit 10 kHz (Daten in FIFO 10 us nach
Flanke GP0)
PIO init machine 1,0,f,p,e,s,0 'Startadresse = 0

'-------------------------- LA-Code MMBasic ----------------------------
'Speicherpuffer definieren
Dim a$(1)=("_","-") 'Zeichen für den Ausdruck
Länge%=64 'Größe des gepackten Arrays
Dim data%(2*length%-1) 'Array zum Speichern der 32-Bit-Samples

‘FIFO-Format
Dim gepackt%(länge%-1) 'DMA-Array zum Packen von 32-Bit-Samples

'in 64-Bit-Ganzzahlen

'DMA-Maschine laufen lassen und nach Belieben wiederholen
Do
 PIO DMA RX 1,0,2*Länge%,gepackt%(),ReadyInt
 print "Drück irgendeine Taste, um die Abtastung neu zu starten"
 do:loop while inkey$=""
Schleife
Ende

'--------------------------------SUBS MMBasic --------------------------
Sub ReadyInt
'PIO stoppen und für nächsten Durchlauf neu starten
PIO stop 1,0
PIO init machine 1,0,f,p,e,s,0 'Startadresse = 0

'Hol die Daten aus dem gepackten DMA-Puffer und pack sie wieder in das
ursprüngliche 32-Bit-Format
Speicher entpacken packed%(),data%(),2*length%,32

'Serielle Ausgabe wie bei Logikanalysator-Traces
Für j=0 bis 5
 Maske%=2^j
 Für i=0 bis 2*Länge%-1
 Wenn i<106 Dann Drucken a$(((Daten%(i) Und Maske%)=Maske%));
 Nächstes i
 Drucken: Drucken
Nächstes j
Ende Sub

PicoMite Benutzerhandbuch Seite 255

BEISPIELPROGRAMM 4

Dieses Programm läuft nur auf RP2350 und zeigt, wie man die FIFOs als einzelne Register benutzt. Der PIO
des RP2350 hat spezielle Befehle, die das unterstützen: MOV RXFIFO[y],ISR und MOV OSR,RXFIFO[y].

MMBasic kann die 4 einzelnen FIFO-Register mit folgendem Befehl lesen/schreiben:

PIO WRITEFIFO a, b, c, d
PIO READFIFO(a, b, c)

a/ pio (0,1 oder 2(nur 2350))
b/ Zustandsmaschine (0...3)
c/ Anzahl (FIFO-Register 0…3)
d/ Daten% (32-Bit-Ganzzahlwert)

Das Programm macht das FIFO für einzelne Lesevorgänge klar und schreibt dann ein paar Werte in diese
Register. Es startet das PIO, das 2 der 4 einzelnen FIFO-Register aktualisiert. Dann liest MMBasic die Werte,
um zu zeigen, dass sich nur 2 Register geändert haben und keine Daten verschoben wurden (wie es beim
RP2040 FIFO passieren würde).

Nur für RP2350-Assembler. Das funktioniert nicht auf RP2040.

pio clear 1

pio assemble 1,".program test"
.line 0
set y,4 'nur ein Wert 4 in Y
mov isr,y 'Y nach isr kopieren
jmp y--,next 'y=y-1 immer zum nächsten
.label next 'Bezeichnung
mov rxfifo[y],isr 'sollte Programm 4 in FIFO [3]
mov isr,y 'Y nach isr kopieren
mov rxfifo[2],isr 'sollte 3 in FIFO [2] programmieren
jmp 0 'wiederholen
.Ende Programm

f=1e6 '1 MHz

'PIO(EXECCTRL a,b,c)
e=pio(execctrl gp0,0,31) 'Standardwert, wird nicht wirklich geändert

'PIO(SHIFTCTRL a,b,c,d,e,f,g,h,i,j)
sr=pio(shiftctrl 0,0,0,0,0,0,0,0,0,1) 'Einzelnen RX lesen, RX=4 tief
sw=pio(shiftctrl 0,0,0,0,0,0,0,0,1,0) 'einzelnes RX schreiben, RX=4 tief

'PIO(PINCTRL a,b,c,d,e,f,g)
p=pio(pinctrl 0,0,0,gp0,gp0,gp0,gp0) 'Standardwert, wird nicht wirklich geändert

'FIFO als einzelne Register testen
'FIFO mit vorab festgelegten Werten füllen
pio init machine 1,0,f,p,e,sw,0 'Maschine zum Schreiben in RX-FIFO
initialisieren
for i=0 to &h3 'die 4 RXFIFO-Register schreiben
 pio writefifo 1,0,i,&h100*(i+1) 'Werte &h100, &h200, &h300, &h400 schreiben
next

'Überprüfe, ob die Werte richtig geschrieben wurden
print "3 RXFIFO-Register vor dem Ausführen des Programms"
pio init machine 1,0,f,p,e,sr,0 'Maschine zum Lesen des RX-FIFO initialisieren
für i=0 bis 3 'Lies die 4 RXFIFO-Register
 print i,hex$(pio(readfifo 1,0,i)) 'Überprüfe, ob sie richtig geschrieben sind
nächstes
aus

'PIO-Programm ausführen. Das sollte (kontinuierlich) in die Register 2 und 3 des
FIFO schreiben, aber die Register 0 und 1 nicht verändern

Seite256 PicoMite-Benutzerhandbuch

pio start 1,0

'Zeige die aktualisierten FIFO-Register
print „3 RXFIFO-Register nach dem Ausführen des Programms”
für i=0 bis 3 'die 4 FIFO-Register lesen, um zu sehen, ob das Programm
funktioniert
 print i,hex$(pio(readfifo 1,0,i))
next

Die erwartete Ausgabe ist:
3 RXFIFO-Register vor dem Ausführen des Programms
0 100
1 200
2 300
3 400

3 RXFIFO-Register nach dem Ausführen des Programms
0 100
1 200
2 3
3 4

BEISPIELPROGRAMM 5

Zum Schluss noch ein Beispielprogramm, das zeigt, wie mehrere Zustandsmaschinen zusammenarbeiten
können, wobei jede durch einen Interrupt der anderen ausgelöst wird. Beachte auch die Verwendung von .LINE
NEXT als Startpunkt des zweiten Programms und die Verwendung von x=PIO(NEXT LINE) zur Bestimmung
des Startpunkts des zweiten Programms.

IRQ 1 setzt und IRQ. Wenn die andere Zustandsmaschine auf WAIT 1 IRQ 1 wartet, fährt sie fort, nachdem
IRQ 1 als gesetzt erkannt wurde, und löscht gleichzeitig IRQ 1.

'Test für PIO-IRQs auf den PIO 0-Zustandsmaschinen 0 und 1

 'verwendet GP0 und GP1
 setpin gp0,pio0
 setpin gp1,pio0
 pio clear 0

 'Zielfrequenz für PIO
 f=1e5 '100 kHz

pio assemble 0
 .Programm sm0
 .Zeile 0
 pindirs,1 festlegen „GP0 auf Ausgang setzen, siehe pinctrl
 .Ziel umschließen
 Pins setzen, 1 [31] GP0 auf High setzen, 31 Zyklen warten
 Pins setzen, 0 [31] GP0 auf niedrig setzen, 31 Zyklen warten
 irq 0 „IRQ 0 setzen
 1 IRQ 1 warten ‘Warte, bis sm1 IRQ 1 setzt
 .wrap
.end programmliste

 ln=pio(nächste Zeile) „Zeile im Programm merken
 p0=pio(pinctrl 0,1,,,,gp0) „GP0 ist Pin für SET
 e0=pio(execctrl gp0,pio(.wrap target),pio(.wrap))

pio assemble 0
 .Programm sm1
 .Zeile weiter
 pindirs,1 setzen „GP1-Ausgang festlegen
 .Ziel umschließen
 warte 1 irq 0 ‘auf IRQ 0 warten

PicoMite Benutzerhandbuch Seite 257

 Pins setzen, 1 [31] GP1 auf High setzen und 31 Zyklen warten
 Pins,0 [31] setzen „GP1 auf niedrig setzen und 31 Zyklen warten
 irq 1 „IRQ 1 setzen
 .wrap
.end Programmliste

 p1=pio(pinctrl 0,1,,,,gp1)
 e1=pio(execctrl gp0,pio(.wrap target),pio(.wrap))

 pio init Maschine 0,1,f,p1,e1,,ln ‘sm1 bei Zeile ln starten
 pio init Maschine 0,0,f,p0,e0,,0 „sm0 bei Zeile 0 starten

 pio start 0,1
 pio start 0,0

do:loop 'nichts tun, PIO die Signale generieren lassen

* Ende *

Seite258 PicoMite-Benutzerhandbuch

Anhang G – Sprites
Sprites
 VGA-, HDMI- und LCD-FRAMEBUFFER

Du kannst ein Sprite auf verschiedene Arten erstellen, aber im Grunde speicherst du nur ein Bild in einem
Puffer. Der Unterschied kommt, wenn du das Sprite anzeigst. In diesem Fall speichert die Firmware beim
ersten Mal den Speicherbereich (oder den Bildschirmbereich), der durch das Sprite ersetzt wird, und zeichnet
dann das Sprite an dieser Stelle.

Nachfolgende SHOW-Befehle ersetzen das Sprite durch den gespeicherten Hintergrund, speichern den
Hintergrund für die neue Position und zeichnen schließlich das Sprite. Auf diese Weise kannst du das Sprite
ohne zusätzlichen Code über den Hintergrund bewegen.

Die Kollisionserkennung sitzt dann darüber und sucht nach den rechteckigen Grenzen von Sprites, die sich
berühren, um einen Interrupt zu erzeugen, oder nach Sprites, die den Rand des Rahmens berühren.

Sprites werden so angeordnet, dass die Zeichenreihenfolge in einem LIFO gespeichert wird. Angenommen,
Sprite 1 wird von Sprite 2 und dann von Sprite 3 überlagert. Wenn du einfach Sprite 1 verschieben würdest,
würde sein Hintergrund Teile von 2 und 3 überschreiben – was nicht in unserem Sinne ist. SPRITE SHOW
SAFE löst den LIFO auf, indem es jedes Sprite in umgekehrter Reihenfolge entfernt, Sprite 1 verschiebt und
dann zuerst 2 und dann 3 darüber wiederherstellt. Schließlich gibt es noch das Konzept der Ebenen (dies ist
der vierte Parameter in SPRITE SHOW).

Das Sprite-Konzept sieht so aus:

 Sprites sind vollfarbig und können jede beliebige Größe haben. Die Kollisionsgrenze ist das
umschließende Rechteck.

 Sprites werden bis zu einer bestimmten Anzahl (1 bis 64) geladen.

 Sprites werden mit dem Befehl SPRITE SHOW angezeigt.

 Für jeden SHOW-Befehl muss der Benutzer eine „Ebene” auswählen. Diese kann zwischen 0 und 10
liegen.

 Sprites kollidieren mit Sprites auf derselben Ebene, Ebene 0 oder dem Bildschirmrand.

 Ebene 0 ist ein Sonderfall, und Sprites auf allen anderen Ebenen kollidieren mit ihr.

 Die SCROLL-Befehle lassen Sprites auf allen Ebenen außer Ebene 0 unbewegt.

 Sprites auf Ebene 0 scrollen mit dem Hintergrund, was zu Kollisionen führen kann.

 Es gibt keine praktische Begrenzung für die Anzahl der Kollisionen, die durch SHOW- oder SCROLL-
Befehle verursacht werden.

 Mit der Funktion SPRITE() kann der Benutzer die Details einer Kollision vollständig abfragen.

 Ein SHOW-Befehl überschreibt die Details aller vorherigen Kollisionen für dieses Sprite.

 Ein SCROLL-Befehl überschreibt die Details früherer Kollisionen für ALLE Sprites.

 Um einen Bildschirm in einen früheren Zustand zurückzusetzen, sollten Sprites in umgekehrter
Reihenfolge zu ihrer Schreibweise entfernt werden (d. h. Last In First Out).

Da das Verschieben eines Sprites oder insbesondere das Scrollen des Hintergrunds zu mehreren Sprite-
Kollisionen führen kann, ist es wichtig zu verstehen, wie diese abgefragt werden können.

Der beste Weg, um mit einer Sprite-Kollision umzugehen, ist die Verwendung der Interrupt-Funktion. Eine
Kollisions-Interrupt-Routine wird mit dem Befehl SPRITE INTERRUPT eingerichtet. Beispiel:

 SPRITE INTERRUPT collision

Im Folgenden findest du ein Beispielprogramm zum Erkennen aller Kollisionen, die entweder durch einen
SPRITE SHOW-Befehl oder einen SCROLL-Befehl verursacht wurden

'

' Diese Routine zeigt eine vollständige Abfrage von Kollisionen

'

SUB collision

PicoMite Benutzerhandbuch Seite 259

 LOCAL INTEGER i

' Zuerst mit der SPRITE(S)-Funktion schauen, was die Unterbrechung verursacht hat

 IF SPRITE(S) <> 0 THEN 'Kollision eines bestimmten einzelnen Sprites

 'SPRITE(S) gibt das Sprite zurück, das sich bewegt hat und die Kollision
verursacht hat

 PRINT „Kollision bei Sprite “, SPRITE(S)

 process_collision(SPRITE(S))

 PRINT

 SONST '0 bedeutet, dass die Kollision von einem oder mehreren Sprites durch eine
Bewegung im Hintergrund verursacht wurde

 ' SPRITE(C, 0) zeigt uns, wie viele Sprites eine Kollision hatten

 PRINT "Durch das Scrollen sind insgesamt ", SPRITE(C,0)," Sprites
zusammengestoßen"

 FOR I = 1 TO SPRITE(C, 0)

 ' SPRITE(C, 0, i) zeigt uns die Sprite-Nummer des „I”-ten Sprites

 PRINT "Sprite ", SPRITE(C, 0, i)

 process_collision(SPRITE(C, 0, i))

 NEXT i

 PRINT

 ENDIF

END SUB

' Details zu den spezifischen Kollisionen für ein bestimmtes Sprite abrufen

SUB process_collision(S AS INTEGER)

 LOKAL INTEGER i, j

 ' SPRITE(C, #n) gibt die Anzahl der aktuellen Kollisionen für Sprite n zurück

 PRINT „Insgesamt „SPRITE(C, S) “ Kollisionen”

 FOR I = 1 TO SPRITE(C, S)

 ' SPRITE(C, S, i) gibt uns die Sprite-Nummer des „I“-ten Sprites

 j = SPRITE(C, S, i)

 WENN j = &HF1 DANN

 DRUCKE „Kollision mit der linken Bildschirmseite”

 SONST WENN j = &HF2 DANN

 PRINT "Kollision mit dem oberen Bildschirmrand"

 SONST WENN j = &HF4 DANN

 DRUCKE „Kollision mit der rechten Bildschirmseite”

 SONST WENN j = &HF8 DANN

 PRINT "Kollision mit dem unteren Bildschirmrand"

 SONST

 ' SPRITE(C, #n, #m) gibt Details zur m-ten Kollision zurück

 PRINT "Kollision mit Sprite ", SPRITE(C, S, i)

 ENDIF

 NEXT i

END SUB

Seite260 PicoMite-Benutzerhandbuch

Anhang H – Turtle-Grafiken
Turtle-Grafik
Diese Version hat eine echt umfassende Turtle-Grafik-Implementierung für alle Versionen, außer für WebMite
RP2040 und WebMite RP2350.

Die unterstützten Befehle mit dem Präfix „TURTLE “ sind:

Bewegungsbefehle

FORWARD Entfernung (FD) – Um die angegebene Pixelanzahl vorwärts bewegen

BACK distance (BK) – Um distance Pixel rückwärts bewegen

LINKS [Winkel] (LT) – Nach links um Winkelgrad drehen, 90 Grad, wenn nichts angegeben
ist

RECHTS [Winkel] (RT) - Nach rechts um Winkel Grad drehen, 90 Grad, wenn nicht anders
angegeben

Positionsbefehle

SET XY x, y - Zur absoluten Position (x,y) gehen

SET X x - X-Koordinate einstellen, Y beibehalten

SET Y y - Y-Koordinate einstellen, X behalten

SET HEADING Winkel (SETH) - Absolute Richtung einstellen (0=nach oben, 90=nach rechts)

HOME - Zurück zur Mitte (MM.HRES\2,MM.VRES\2) Richtung 0

Stiftsteuerungsbefehle

STIFT HOCH (PU) – Stift anheben (Zeichnen beenden)

PEN DOWN (PD) - Stift absenken (Zeichnen starten)

PEN COLOUR Farbe (PC) - Stiftfarbe einstellen

STIFTBREITE Breite (PW) - Strichstärke einstellen

Befehle für Bögen und Kurven

BOGEN Radius Winkel – Zeichne einen Bogen mit dem angegebenen Radius und Winkel

ARCLEFT Radius, Winkel (ARCL) - Zeichne einen nach links gerichteten Bogen

ARCRIGHT Radius,Winkel (ARCR) - Rechtsdrehenden Bogen zeichnen

BEZIER cp1 , cp1winkel, cp2, cp2winkel, ende, endekwinkel - Zeichne eine Bezierkurve mit
Kontrollpunkten

Grundlegende Formbefehle

CIRCLE Radius – Zeichne einen Kreis an der aktuellen Position

DOT Größe - Gefüllten Punkt zeichnen (Standardgröße = 5)

FCIRCLE radius - Gefüllten Kreis zeichnen

FRECTANGLE Breite, Höhe (FRECT) - Gefülltes Rechteck zeichnen

WEDGE Radius Anfang Ende– Gefüllten Keil/Tortenstück zeichnen

Füllbefehle

FILL COLOUR Farbe (FC) – Füllfarbe festlegen und Füllung aktivieren

FILL PATTERN Muster (FP) - Füllmuster festlegen (0-31)

KEINE FÜLLUNG – Füllung deaktivieren

FÜLLEN – An der aktuellen Position flächig füllen

FÜLLUNG STARTEN (BF) - Polygon für Füllung aufnehmen

END FILL (EF) - Polygonaufzeichnung beenden und füllen

Cursor-Befehle

SCHILDKRÖTE ANZEIGEN (ST) - Schildkrötencursor anzeigen

SCHILDKRÖTE VERSTECKEN (HT) - Schildkröten-Cursor ausblenden

CURSORGRÖSSE Größe (CS) - Cursorgröße einstellen

PicoMite Benutzerhandbuch Seite 261

CURSORFARBE Farbe CC) - Cursorfarbe einstellen

STEMPEL – Zeichne eine Schildkröte an der aktuellen x,y-Position

Befehle zur Statusverwaltung

RESET [anzeigen] - Bildschirm löschen und alles zurücksetzen, Schildkröte anzeigen, wenn
show = 1

PUSH - Aktuelle Position und Richtung im Stapel speichern

POP – Position und Richtung aus dem Stapel wiederherstellen

Der Code kann Kreise, Rechtecke und Polygone mit einer strukturierten Füllung ausfüllen. Lass ihn im Modus
2 auf einem RP2040-VGA-System oder im Modus 3 auf einem RP2350-VGA- oder HDMI-System laufen.

Füllmuster

0: Vollflächige Füllung

1: Schachbrettmuster

2: Vertikale Linien

3: Horizontale Linien

4: Diagonales Kreuz

5: Diagonale Streifen

6: Kreuzschraffur

7: Feine Diagonale

8: Dichtes Schachbrettmuster

9: Diagonale rechts mittel

10: Diagonal links mittel

11: Vertikale Linien mittel

12: Horizontale Linien, mittel

13: Großes Schachbrettmuster

14: Vertikal gepunktet

15: Enge horizontale Streifen

16: Gitter

17: Webmuster

18: Rautenmuster

19: Diagonaler Farbverlauf

20: Diagonaler Farbverlauf umgekehrt

21: Rand/Rahmen

22: Vertikale Teilung

23: Gewebt

24: Spärliche Punkte

25: Diagonal sehr fein

26: Pfeil nach oben

27: Dichte Punkte

28: Chevron

29: Hohlraute

30: Kreis

31: Gefüllter Kreis

Seite262 PicoMite-Benutzerhandbuch

Anhang I – Spezielle Tastaturtasten
Spezielle Tastaturtasten

MMBasic macht ein einziges Zeichen für die Funktionstasten und andere Sondertasten auf der Tastatur.
Hinweis: Die DE-USB-Tastatur gibt die Codes 200-209 für Tastenzeichen mit Akzenten
bei normaler Eingabe (input$/inkey$)

Die Codes sind in dieser Tabelle als Hexadezimal- und Dezimalzahlen angegeben:

Tastaturtaste
Tastencode

(Hex)
Tastencode

(dezimal)

DEL 7F 127

Pfeil nach oben 80 128

Pfeil nach unten 81 129

Pfeil nach links 82 130

Pfeil nach rechts 83 131

Einfügen 84 132

Startseite 86 134

Ende 87 135

Seite nach oben 88 136

Seite runter 89 137

Alt 8B 139

F1/Umschalt F1 91/B1 145/177

F2/Umschalt F2 92/B2 146/178

F3/Umschalt F3 ** 93/B3 147/179

F4/Umschalt F4 ** 94/B4 148/180

F5/Umschalt F5 ** 95/B5 149/181

F6/Umschalt F6 ** 96/B6 150/182

F7/Umschalt F7 ** 97/B7 151/183

F8/Umschalt F8 ** 98/B8 152/184

F9/Umschalt F9 99/B9 153/185

F10/Umschalt F10 9A/BA 154/186

F11/Umschalt F11 9B/BB 155/187

F12/Umschalt F12 9C/BC 156/188

PrtScr/SysRq 9D 157

PAUSE/BREAK 9E 158

SHIFT_TAB 9F 159

SHIFT_DEL A0 160

SHIFT_DOWN_ARROW A1 161

SHIFT_RIGHT_ARROW A3 163

PicoMite Benutzerhandbuch Seite 263

** funktioniert auch für VT100-Emulatoren

Bei angeschlossenen PS2- und USB-Tastaturen wird, wenn die Umschalttaste gleichzeitig mit den
Funktionstasten F1 bis F12 gedrückt wird, 20 (hex) zum Code hinzugefügt (dies entspricht der Einstellung von
Bit 5). Beispielsweise erzeugt Umschalt-F10 BA (hex).

Der Umschaltmodifikator funktioniert mit den Funktionstasten F1 bis F12; er wird für die anderen Tasten außer
TAB, DEL, DOWN_ARROW und RIGHT_ARROW, wie oben angegeben, ignoriert. MMBasic übersetzt die
meisten VT100-Escape-Codes, die von Terminalemulatoren wie TeraTerm und Putty erzeugt werden, in diese
Codes (der Umschaltmodifikator funktioniert nur für F3-F8). Das heißt, dass ein Terminalemulator, der über
einen USB- oder seriellen Anschluss als Konsole läuft, die gleichen Tastencodes erzeugt wie eine direkt
angeschlossene Tastatur.

Seite264 PicoMite-Benutzerhandbuch

Anhang J – Programmieren in BASIC – Ein Tutorial
Programmieren in BASIC – Ein Tutorial

Die Sprache BASIC wurde 1964 vom Dartmouth College in den USA als Computersprache für den
Programmierunterricht eingeführt und ist daher einfach zu verwenden und zu erlernen. Gleichzeitig
hat sie sich als kompetente und leistungsfähige Programmiersprache bewährt und war daher in den
späten 70er und frühen 80er Jahren sehr beliebt. Auch heute noch sind einige große kommerzielle
Datensysteme in der Sprache BASIC (hauptsächlich Pick Basic) geschrieben.

Der in der PicoMite-Firmware verwendete BASIC-Interpreter heißt MMBasic und ist eine moderne
Version der Programmiersprache BASIC, die den vor Jahren beliebten Microsoft BASIC-Interpreter
grob nachahmt.

Für Programmierer ist der größte Vorteil von BASIC, dass es so einfach zu benutzen ist. Einige
modernere Sprachen wie C und C++ können echt kompliziert sein, aber mit BASIC kannst du mit
einem einzeiligen Programm anfangen und schon was Sinnvolles damit machen. MMBasic ist auch
cool, weil du damit anspruchsvolle Grafiken zeichnen, die externen E/A-Pins für die Steuerung
anderer Geräte manipulieren und über eine Reihe integrierter Kommunikationsprotokolle mit anderen
Geräten kommunizieren kannst.

Befehlszeile

Die Interaktion mit der MMBasic- erfolgt über die Konsole an der Eingabeaufforderung (d. h. dem
Größer-als-Zeichen (>) auf der Konsole). Beim Start zeigt MMBasic die Eingabeaufforderung an und
wartet darauf, dass ein Befehl eingegeben wird. Es kehrt auch zur Eingabeaufforderung zurück, wenn
dein Programm beendet wird oder eine Fehlermeldung ausgibt.

Wenn die Befehlszeile angezeigt wird, kannst du eine Vielzahl von Befehlen eingeben und ausführen.
In der Regel werden damit das im Speicher befindliche Programm aufgelistet (LIST) oder bearbeitet
(EDIT) oder vielleicht einige Optionen festgelegt (Befehl OPTION). Meistens lautet der Befehl
einfach RUN, wodurch MMBasic angewiesen wird, das im Programmspeicher befindliche Programm
auszuführen.

Fast jeder Befehl kann an der Eingabeaufforderung eingegeben werden, was oft genutzt wird, um
einen Befehl zu testen und zu sehen, wie er funktioniert. Ein einfaches Beispiel ist der Befehl PRINT
(mehr dazu später), den du testen kannst, indem du Folgendes an der Eingabeaufforderung eingibst:

PRINT 2 + 2

Es überrascht nicht, dass MMBasic die Zahl 4 ausgibt, bevor es zur Befehlszeile zurückkehrt.

Diese Möglichkeit, einen Befehl an der Befehlszeile zu testen, ist nützlich, wenn du das
Programmieren in BASIC lernst. Daher lohnt es sich, einen Raspberry Pi Pico mit der PicoMite-
Firmware zur Hand zu haben, um während der Arbeit mit diesem Tutorial gelegentlich Tests
durchzuführen.

Struktur eines BASIC-Programms

Ein BASIC-Programm beginnt an der ersten Zeile und läuft bis zum Ende oder bis es auf einen END-
Befehl trifft – an diesem Punkt zeigt MMBasic die Befehlszeile (>) auf der Konsole an und wartet auf
eine Eingabe.

Ein Programm besteht aus einer Reihe von Anweisungen oder Befehlen, von denen jeder den BASIC-
Interpreter dazu veranlasst, etwas zu tun (die Begriffe „Anweisung” und „Befehl” haben im
Allgemeinen dieselbe Bedeutung und werden in diesem Tutorial synonym verwendet).

Normalerweise steht jede Anweisung in einer eigenen Zeile, aber du kannst auch mehrere
Anweisungen in einer Zeile haben, die durch das Doppelpunktzeichen (:) getrennt sind.

Zum Beispiel:

PicoMite Benutzerhandbuch Seite 265

A = 24.6 : PRINT A

Jede Zeile kann mit einer Zeilennummer beginnen. Zeilennummern waren in den frühen BASIC-
Interpretern obligatorisch, moderne Implementierungen (wie MMBasic) benötigen sie jedoch nicht.
Du kannst sie weiterhin verwenden, wenn du möchtest, aber sie haben keinen Vorteil und überladen in
der Regel nur deine Programme.

Hier ist ein Beispiel für ein Programm, das Zeilennummern verwendet:

50 A = 24,6
60 PRINT A

Eine Zeile kann auch mit einem Label beginnen, das als Ziel für einen Programmsprung mit dem
Befehl GOTO verwendet werden kann. Dies wird näher erläutert, wenn wir den Befehl GOTO
behandeln, aber hier ist ein Beispiel (der Labelname lautet JmpBack):

JmpBack: A = A + 1
PRINT A
GOTO JmpBack

Kommentare

Ein Kommentar ist jeder Text, der auf das einfache Anführungszeichen (') folgt. Ein Kommentar kann
an beliebiger Stelle eingefügt werden und erstreckt sich bis zum Ende der Zeile. Wenn MMBasic auf
einen Kommentar stößt, springt es einfach zum Ende des Kommentars (d. h., es führt keine Aktion in
Bezug auf den Kommentar aus).

Kommentare sollten verwendet werden, um nicht offensichtliche Teile des Programms zu erklären
und Personen, die mit dem Programm nicht vertraut sind, allgemein darüber zu informieren, wie es
funktioniert und was es tut. Denken Sie daran, dass Sie sich nach nur wenigen Monaten nicht mehr an
ein von Ihnen geschriebenes Programm erinnern können und es Ihnen seltsam vorkommen wird, wenn
Sie es wieder zur Hand nehmen. Aus diesem Grund werden Sie sich später dafür bedanken, wenn Sie
viele Kommentare verwenden.

Hier sind ein paar Beispiele für Kommentare:

' berechne die Hypotenuse
PRINT SQR(a * a + b * b)

oder

INPUT var ' Temperatur abfragen

Ältere BASIC-Programme haben den Befehl REM benutzt, um einen Kommentar zu starten, und du
kannst den auch benutzen, wenn du willst, aber das einfache Anführungszeichen ist einfacher und
praktischer.

Der Befehl PRINT

Es gibt eine Reihe von grundlegenden Befehlen, die wir in diesem Tutorial behandeln werden, aber
der wohl nützlichste ist der Befehl PRINT. Seine Aufgabe ist einfach: etwas auf der Konsole
ausgeben. Er wird hauptsächlich verwendet, um Daten anzuzeigen (z. B. das Ergebnis von
Berechnungen) oder informative Meldungen auszugeben.

PRINT ist auch nützlich, wenn du einen Fehler in deinem Programm suchst. Du kannst damit die
Werte von Variablen ausgeben und Meldungen an wichtigen Stellen während der Ausführung des
Programms anzeigen.

In seiner einfachsten Form gibt der Befehl einfach alles aus, was in der Befehlszeile steht. Zum
Beispiel:

PRINT 54

zeigt auf der Konsole die Zahl 54 gefolgt von einer neuen Zeile an.

Seite266 PicoMite-Benutzerhandbuch

Die auszugebenden Daten können einfach wie hier sein oder ein Ausdruck, also etwas, das berechnet
werden muss. Wir werden später noch genauer auf Ausdrücke eingehen, aber als Beispiel hier:

> PRINT 3/21
 0,1428571429
>

würde das Ergebnis von drei geteilt durch einundzwanzig berechnen und anzeigen. Beachte, dass das
Größer-als-Zeichen (>) die von MMBasic erzeugte Eingabeaufforderung ist – du musst es nicht
eingeben.

Weitere Beispiele für den Befehl PRINT sind:

> PRINT „Wonderful World”
Wonderful World
> PRINT (999 + 1) / 5
 200
>

Du kannst das an der Eingabeaufforderung ausprobieren.

Der Befehl PRINT funktioniert auch mit mehreren Werten gleichzeitig, zum Beispiel:

> PRINT „Die erste Zahl von ist“ 20+25 „und die zweite ist“
18/3
Die erste Zahl ist 45 und die zweite ist 6
>

Normalerweise werden die Werte durch ein Leerzeichen getrennt, wie im vorherigen Beispiel gezeigt,
aber du kannst die Werte auch durch ein Komma (,) trennen. Durch das Komma wird zwischen den
beiden Werten ein Tabulator eingefügt. In MMBasic sind die Tabulatoren im PRINT-Befehl acht
Zeichen voneinander entfernt.

Um die Tabulatorfunktion zu veranschaulichen, gibt der folgende Befehl eine mit Tabulatoren
getrennte Liste von Zahlen aus:

> PRINT 12, 34, 9,4, 1000
 12 34 9,4 1000
>

Beachte, dass vor jeder Zahl ein Leerzeichen gedruckt wird. Dieses Leerzeichen ist ein Platzhalter für
das Minuszeichen (-), falls der Wert negativ ist. Du kannst den Unterschied bei den Zahlen 12 und 9,4
in diesem Beispiel sehen:

> PRINT -12, 34, -9,4, 1000
-12 34 -9,4 1000
>

Die PRINT-Anweisung kann mit einem Semikolon (;) beendet werden. Dadurch wird verhindert, dass
der PRINT-Befehl nach dem Drucken des gesamten Textes in eine neue Zeile springt. Zum Beispiel:

PRINT "Das wird";
PRINT „ in einer einzigen Zeile gedruckt.“

Das ergibt diese Ausgabe:

Dies wird in einer einzigen Zeile gedruckt.

Ohne das Semikolon am Ende der ersten Zeile würde die Meldung so aussehen:

Das wird
 in einer einzigen Zeile gedruckt.

PicoMite Benutzerhandbuch Seite 267

Variablen

Bevor wir weitermachen, müssen wir erklären, was eine „Variable” ist, da sie für die BASIC-Sprache
(und eigentlich für die meisten Programmiersprachen) echt wichtig ist. Eine Variable ist einfach ein
Ort, an dem Daten (also ihr „Wert”) gespeichert werden. Dieser Wert kann sich während der
Ausführung des Programms ändern, deshalb heißt sie „Variable”.

Variablen in MMBasic können drei verschiedene Typen haben. Am häufigsten wird der Typ
„Gleitkomma” verwendet, der automatisch angenommen wird, wenn der Typ der Variablen nicht
angegeben wird. Die beiden anderen Typen sind „Ganzzahl” und „Zeichenkette”, auf die wir später
noch eingehen werden. Eine Gleitkommazahl ist eine normale Zahl, die einen Dezimalpunkt enthalten
kann. Beispielsweise sind 3,45, -0,023 oder 100,00 allesamt Gleitkommazahlen.

Eine Variable kann zum Speichern einer Zahl verwendet werden und dann genauso wie die Zahl
selbst genutzt werden. In diesem Fall repräsentiert sie den Wert der letzten Zahl, die ihr zugewiesen
wurde.

Ein einfaches Beispiel:

A = 3
B = 4
PRINT A + B

zeigt die Zahl 7 an. In diesem Fall sind sowohl A als auch B Variablen, und MMBasic hat ihre
aktuellen Werte in der PRINT-Anweisung verwendet. MMBasic erstellt automatisch eine Variable,
wenn es zum ersten Mal auf sie trifft. Die Anweisung A = 3 hat also eine Gleitkommavariable (der
Standardtyp) mit dem Namen A erstellt und ihr dann den Wert 3 zugewiesen.

Der Name einer Variablen muss mit einem Buchstaben beginnen, während der Rest des Namens aus
Buchstaben, Zahlen, Unterstrichen oder Punkten bestehen kann. Der Name kann bis zu 31 Zeichen
lang sein, wobei die Groß- und Kleinschreibung keine Rolle spielt. Hier sind einige Beispiele:

Total_Count
ForeColour
temp3
count
x
DasIstEinSehrLangerVariablenname
Inkrement.Wert

Du kannst den Wert einer Variablen überall in deinem Programm ändern, indem du den
Zuweisungsbefehl benutzt, z. B.:

Variable = Ausdruck

Zum Beispiel:

temp3 = 24,6
count = 5
CTemp = (FTemp – 32) * 0,5556

Im letzten Beispiel sind sowohl CTemp als auch FTemp Variablen. Diese Zeile wandelt den Wert von
FTemp (in Grad Fahrenheit) in Grad Celsius um und speichert das Ergebnis in der Variablen CTemp.

Ausdrücke

Wir haben den Begriff „Ausdruck” schon mal in diesem Tutorial gesehen, und in der Programmierung
hat er eine bestimmte Bedeutung. Es ist eine Formel, die vom BASIC-Interpreter in eine einzelne Zahl
oder einen Wert umgewandelt werden kann.

MMBasic wertet numerische Ausdrücke nach den gleichen Regeln aus, die wir in der Schule gelernt
haben. Zum Beispiel werden Multiplikation und Division zuerst ausgeführt, gefolgt von Addition und
Subtraktion. Diese Regeln werden als Vorrangregeln bezeichnet und sind zuvor in diesem Handbuch
ausführlich beschrieben worden (siehe Kapitel „Ausdrücke und Operatoren”).

Seite268 PicoMite-Benutzerhandbuch

Das heißt, MMBasic berechnet 2 + 3 * 6, indem es zuerst 3 mit 6 multipliziert, was 18 ergibt, und
dann 2 addiert, was einen Endwert von 20 ergibt. Ebenso werden sowohl 5 * 4 als auch 10 + 4 * 3 – 2
zu 20 berechnet.

Wenn du den Interpreter dazu bringen willst, Teile des Ausdrucks zuerst zu berechnen, kannst du
diesen Teil des Ausdrucks in Klammern setzen. Zum Beispiel ergibt (10 + 4) * (3 – 2) 14 und nicht
20, wie es ohne Klammern der Fall gewesen wäre. Die Verwendung von Klammern verlangsamt das
Programm nicht nennenswert, daher solltest du sie großzügig einsetzen, wenn die Möglichkeit besteht,
dass MMBasic deine Absicht falsch interpretiert.

Wie schon erwähnt, kannst du Variablen in einem Ausdruck genauso wie Zahlen verwenden. Zum
Beispiel erhöht das den Wert der Variablen temp um eins:

temp = temp + 1

Du kannst auch Funktionen in Ausdrücken verwenden. Das sind spezielle Operationen, die MMBasic
anbietet, zum Beispiel um trigonometrische Werte zu berechnen.

Ein Beispiel für die Verwendung einer Funktion ist das folgende, das die Länge der Hypotenuse eines
rechtwinkligen Dreiecks ausgibt. Hier wird die Funktion SQR() verwendet, die die Quadratwurzel
einer Zahl zurückgibt (a und b sind Variablen, die die Längen der anderen Seiten enthalten):

PRINT SQR(a * a + b * b)

MMBasic berechnet diesen Ausdruck, indem es zuerst a mit a multipliziert, dann b mit b
multipliziert und schließlich die Ergebnisse addiert. Die resultierende Zahl wird dann an die Funktion
SQR() übergeben, die die Quadratwurzel dieser Zahl (d. h. die Hypotenuse) berechnet und sie zur
Anzeige an den Befehl PRINT zurückgibt.

Einige andere mathematische Funktionen, die MMBasic bietet, sind:

SIN(r) – der Sinus von r
COS(r) – der Kosinus von r
TAN(r) – der Tangens von r

Es gibt noch viele weitere Funktionen, die dir zur Verfügung stehen und die alle weiter oben in
diesem Handbuch aufgeführt sind.

Beachte, dass bei den oben genannten trigonometrischen Funktionen der an die Funktion übergebene
Wert (d. h. „r”) der Winkel in Radianten ist. In MMBasic kannst du die Funktion RAD(d) verwenden,
um einen Winkel von Grad in Radianten umzurechnen („d” ist der Winkel in Grad).

Eine weitere Eigenschaft der meisten Programmiersprachen (einschließlich BASIC) ist, dass du
Funktionsaufrufe ineinander verschachteln kannst. Wenn du zum Beispiel den Winkel in Grad (also
„d”) hast, kannst du den Sinus dieses Winkels mit diesem Ausdruck berechnen:

PRINT SIN(RAD(d))

In diesem Fall nimmt MMBasic zuerst den Wert von d und wandelt ihn mit der Funktion RAD() in
Radianten um. Das Ergebnis dieser Funktion wird dann in die Funktion SIN() eingegeben.

Die IF-Anweisung

Entscheidungen zu treffen ist ein zentraler Bestandteil der meisten Computerprogramme, und in
BASIC geschieht dies in der Regel mit der IF-Anweisung. Diese wird fast wie ein englischer Satz
geschrieben:

IF Bedingung THEN Aktion

Die Bedingung ist meistens ein Vergleich wie gleich, kleiner als, größer als usw.

Zum Beispiel:

IF Temp < 25 THEN PRINT "Kalt"

PicoMite Benutzerhandbuch Seite 269

Temp wäre eine Variable, die die aktuelle Temperatur (in ºC) enthält, und PRINT „Kalt” die
auszuführende Aktion.

Es gibt eine Reihe von Tests, die du durchführen kannst:

= gleich <> ungleich
< kleiner als <= kleiner oder gleich
> größer als >= größer als oder gleich

Du kannst auch eine ELSE-Klausel hinzufügen, die ausgeführt wird, wenn die anfängliche Bedingung
falsch ist:

IF Bedingung THEN wahre Aktion ELSE falsche Aktion

Das führt zum Beispiel zu unterschiedlichen Aktionen, wenn die Temperatur unter 25 oder 25 oder
mehr ist:

IF Temp < 25 THEN PRINT "Kalt" ELSE PRINT "Heiß"

In den vorherigen Beispielen wurden alle einzeilige IF-Anweisungen verwendet, aber du kannst auch
mehrzeilige IF-Anweisungen verwenden. Diese sehen so aus:

IF Bedingung THEN
 wahre-Aktion
 wahre-Aktion
ENDIF

oder
WENN Bedingung DANN
 true-action
 true-action
SONST
 falsche Aktion
 false-action
ENDIF

Im Gegensatz zur einzeiligen IF-Anweisung kannst du viele wahre Aktionen haben, die jeweils in
einer eigenen Zeile stehen, und genauso viele falsche Aktionen. Im Allgemeinen ist die einzeilige IF-
Anweisung praktisch, wenn du eine einfache Aktion ausführen musst, während die mehrzeilige
Version viel einfacher zu verstehen ist, wenn die Aktionen zahlreich und komplizierter sind.

Ein Beispiel für eine mehrzeilige IF-Anweisung mit mehr als einer Aktion ist:

IF Betrag < 100 THEN
 PRINT „Zu niedrig”
 PRINT „Mindestwert ist 100”
ELSE
 PRINT „Eingabe akzeptiert”
 Auf SD-Karte speichern
 DRUCKEN „Zweiten Betrag eingeben“
ENDIF

Beachte, dass im obigen Beispiel jede Aktion eingerückt ist, um zu zeigen, zu welchem Teil der IF-
Struktur sie gehört. Das Einrücken ist nicht zwingend erforderlich, macht das Programm aber für
jemanden, der damit nicht vertraut ist, viel verständlicher und ist daher sehr empfehlenswert.

Seite270 PicoMite-Benutzerhandbuch

In einer mehrzeiligen IF-Anweisung kannst du mit dem Befehl ELSE IF zusätzliche Tests machen.
Das lässt sich am besten anhand eines Beispiels erklären (die Temperaturen sind alle in °C
angegeben):

IF Temp < 0 THEN
 PRINT „Frost“
ELSE IF Temp < 20 THEN
 PRINT „Kalt”
ELSE IF Temp < 35 THEN
 DRUCKE „Warm”
SONST
 DRUCKE „Heiß”
ENDIF

ELSE IF nutzt die gleichen Tests wie ein normales IF (also <, <= usw.), aber der Test wird nur
gemacht, wenn der vorherige Test falsch war. Du bekommst also zum Beispiel nur die Meldung
„Warm”, wenn Temp < 0 nicht stimmt und Temp < 20 nicht stimmt, aber Temp < 35
stimmt. Das letzte ELSE fängt den Fall ab, in dem alle Tests falsch waren.

Ein Ausdruck wie Temp < 20 wird von MMBasic entweder als wahr oder falsch ausgewertet,
wobei wahr den Wert eins und falsch den Wert null hat. Du kannst das sehen, wenn du Folgendes in
die Konsole eingibst:

PRINT 30 > 20

MMBasic gibt 1 aus, was bedeutet, dass der Wert des Ausdrucks wahr ist.

Ähnlich wird das Folgende 0 ausgeben, was bedeutet, dass der Ausdruck als falsch ausgewertet
wurde.

PRINT 30 < 20

Die IF-Anweisung kümmert sich nicht wirklich darum, wie die Bedingung tatsächlich lautet, sondern
wertet die Bedingung einfach aus und nimmt bei einem Ergebnis von Null „falsch“ und bei einem
Ergebnis ungleich Null „wahr“ an.

Dies ermöglicht einige praktische Abkürzungen. Wenn beispielsweise BalanceCorrect eine
Variable ist, die wahr (ungleich Null) ist, wenn eine bestimmte Funktion des Programms korrekt ist,
kann Folgendes verwendet werden, um eine Entscheidung auf der Grundlage dieses Werts zu treffen:

IF BalanceCorrect THEN …etwas tun…

FOR-Schleifen

Eine weitere häufige Anforderung in der Programmierung ist die Wiederholung einer Reihe von
Aktionen. Du möchtest vielleicht alle sieben Tage der Woche durchlaufen und für jeden Tag die
gleiche Funktion ausführen. BASIC bietet für diese Art von Aufgabe die FOR-Schleifenkonstruktion,
die wie folgt funktioniert:

FOR day = 1 TO 7
 Mach was basierend auf dem Wert von „day”
NEXT day

Zuerst wird die Variable „day” erstellt und mit dem Wert 1 belegt. Das Programm führt dann die
folgenden Anweisungen aus, bis es zur NEXT-Anweisung kommt. Diese weist den BASIC-Interpreter
an, den Wert von „day” zu erhöhen, zur vorherigen FOR-Anweisung zurückzukehren und die
folgenden Anweisungen ein zweites Mal auszuführen. Dies wird so lange wiederholt, bis der Wert
von „day” 7 überschreitet. Dann verlässt das Programm die Schleife und fährt mit den Anweisungen
nach der NEXT-Anweisung fort.

PicoMite Benutzerhandbuch Seite 271

Als einfaches Beispiel kannst du die Zahlen von eins bis zehn wie folgt ausgeben:

FOR nbr = 1 TO 10
 PRINT nbr,;
NEXT nbr

Das Komma am Ende der PRINT-Anweisung weist den Interpreter an, nach dem Drucken der Zahl
zur nächsten Tabulator-Spalte zu springen, und das Semikolon lässt den Cursor in dieser Zeile stehen,
anstatt automatisch zur nächsten Zeile zu springen. Dadurch werden die Zahlen in ordentlichen
Spalten auf der Seite gedruckt.

Das Ergebnis sieht dann so aus:

 1 2 3 4 5 6 7 8 9 10

Die FOR-Schleife hat noch ein paar zusätzliche Tricks auf Lager. Mit dem Schlüsselwort STEP
kannst du den Wert ändern, um den die Variable erhöht wird. So werden beispielsweise mit dem
folgenden Code nur die ungeraden Zahlen gedruckt:

FOR nbr = 1 TO 10 STEP 2
 PRINT nbr,;
NEXT nbr

Der Wert des Schritts (oder Inkrementwerts) ist standardmäßig eins, wenn das Schlüsselwort STEP
nicht verwendet wird, aber du kannst ihn auf eine beliebige Zahl setzen.

Wenn MMBasic die Variable erhöht, checkt es, ob die Variable den TO-Wert überschritten hat, und
wenn ja, verlässt es die Schleife. Im obigen Beispiel erreicht der Wert von nbr also neun und wird
ausgegeben, aber in der nächsten Schleife ist nbr elf, und an diesem Punkt verlässt die Ausführung
die Schleife. Dieser Test wird auch am Anfang der Schleife gemacht. Wenn zum Beispiel der Wert
der Variablen am Anfang den TO-Wert überschreitet, wird die Schleife nie ausgeführt, nicht einmal.

Wenn du den STEP-Wert auf eine negative Zahl setzt, kannst du die FOR-Schleife verwenden, um
von einer hohen Zahl zu einer niedrigen zu gelangen. In diesem Fall muss die Startzahl größer als die
TO-Zahl sein.

Das folgende Beispiel gibt die Zahlen von 1 bis 10 in umgekehrter Reihenfolge aus:

FOR nbr = 10 TO 1 STEP -1
 PRINT nbr,;
NEXT nbr

Multiplikationstabelle

Um noch besser zu zeigen, wie Schleifen funktionieren und wie nützlich sie sein können, benutzt das
folgende kurze Programm zwei FOR-Schleifen, um die Multiplikationstabelle auszugeben, die wir
alle in der Schule gelernt haben. Das Programm dafür ist nicht kompliziert:

FOR nbr1 = 1 to 10
 FOR nbr2 = 1 bis 10
 PRINT nbr1 * nbr2,;
 NEXT nbr2
 PRINT
NÄCHSTE nbr1

Die Ausgabe siehst du im folgenden Screenshot, wo auch das Programm aufgelistet ist.

Seite272 PicoMite-Benutzerhandbuch

Du musst die Logik dieses Beispiels Zeile für Zeile durchgehen, um zu verstehen, was es macht. Im
Wesentlichen besteht es aus einer Schleife innerhalb einer anderen. Die innere Schleife, die die
Variable nbr2 erhöht, druckt eine horizontale Zeile der Tabelle. Wenn diese Schleife beendet ist,
führt sie den folgenden PRINT-Befehl aus, der nichts zu drucken hat – also gibt sie einfach eine neue
Zeile aus (d. h. beendet die von der inneren Schleife gedruckte Zeile).

Das Programm führt dann eine weitere Iteration der äußeren Schleife aus, indem es nbr1 erhöht und
die innere Schleife erneut ausführt. Wenn die äußere Schleife schließlich beendet ist (wenn nbr1
größer als 10 ist), erreicht das Programm das Ende und wird beendet.

Ein letzter Hinweis: Du kannst den Variablennamen in der NEXT-Anweisung weglassen, und
MMBasic errät, auf welche Variable du dich beziehst. Es ist jedoch empfehlenswert, den Namen
anzugeben, damit andere, die das Programm lesen, es leichter verstehen können. Du kannst auch
mehrere Schleifen beenden, indem du eine durch Kommas getrennte Liste von Variablen in der
NEXT-Anweisung verwendest. Zum Beispiel:

FOR var1 = 1 TO 5
 FOR var2 = 10 to 13
 PRINT var1 * var2
NEXT var1, var2

DO-Schleifen

Eine andere Art von Schleife ist die DO…LOOP-Struktur, die so aussieht:
DO WHILE Bedingung
 <Anweisung>
 <Anweisung>
LOOP

Zuerst wird die Bedingung geprüft. Wenn sie wahr ist, werden die Anweisungen ausgeführt, bis der
Befehl LOOP erreicht wird. Dann springt das Programm zurück zur DO-Anweisung und die
Bedingung wird nochmal geprüft. Wenn sie immer noch wahr ist, wird die Schleife nochmal
ausgeführt. Die Bedingung ist die gleiche wie beim IF-Befehl (z. B. X < Y).

Das folgende Beispiel druckt beispielsweise 4 Sekunden lang das Wort „Hello” auf der Konsole und
stoppt dann:

Timer = 0
DO WHILE Timer < 4000
 PRINT „Hello”
LOOP

Beachte, dass Timer eine Funktion in MMBasic ist, die die Zeit in Millisekunden seit dem
Zurücksetzen des Timers zurückgibt. Ein Zurücksetzen erfolgt durch Zuweisen von Null zu Timer

PicoMite Benutzerhandbuch Seite 273

(wie oben) oder beim Einschalten des PicoMite.

Eine Variante der DO-LOOP-Struktur ist die folgende:
DO
 <Anweisung>
 <Anweisung>
LOOP UNTIL Bedingung

Hier wird die Schleife erst mal durchlaufen, dann wird die Bedingung geprüft. Wenn die Bedingung
nicht stimmt, wird die Schleife so oft wiederholt, bis die Bedingung stimmt. Denk dran, dass die
Prüfung in LOOP UNTIL das Gegenteil von DO WHILE ist.

Ähnlich wie im vorherigen Beispiel wird auch das Folgende vier Sekunden lang „Hallo“ ausgeben:

Timer = 0
DO
 PRINT „Hallo“
LOOP UNTIL Timer >= 4000

Beide Formen der DO-LOOP-Schleife machen im Grunde dasselbe, also kannst du die Struktur
nehmen, die am besten zu dem passt, was du machen willst.

Schließlich ist es auch möglich, eine DO-Schleife ohne Bedingungen zu verwenden, z. B.
DO
 <Anweisung>
 <Anweisung>
LOOP

Diese Konstruktion wird die Schleife endlos fortsetzen, und du als Programmierer musst eine
Möglichkeit bereitstellen, die Schleife explizit zu verlassen (dies geschieht mit dem Befehl EXIT
DO). Beispiel:

Timer = 0
DO
 PRINT „Hallo“
 IF Timer >= 4000 THEN EXIT DO
LOOP

Konsoleneingabe

Deine Programme sollen nicht nur Daten für den Benutzer ausgeben, sondern auch Eingaben vom
Benutzer entgegennehmen. Dazu musst du Tastenanschläge von der Konsole erfassen, was mit dem
Befehl INPUT möglich ist. In seiner einfachsten Form lautet der Befehl:

INPUT var

Dieser Befehl zeigt ein Fragezeichen auf dem Konsolenbildschirm an und wartet darauf, dass eine
Zahl eingegeben und die Eingabetaste gedrückt wird. Diese Zahl wird dann der Variablen var
zugewiesen.

Das folgende Programm erweitert zum Beispiel die Formel zur Berechnung der Hypotenuse eines
Dreiecks, indem es dem Benutzer ermöglicht, die Längen der anderen Seiten über die Konsole
einzugeben.

PRINT „Länge der Seite 1”
INPUT a
PRINT „Länge der Seite 2”
INPUT b
PRINT „Länge der Hypotenuse ist“ SQR(a * a + b * b)

Seite274 PicoMite-Benutzerhandbuch

Hier ist ein Screenshot einer typischen Sitzung:

Der Befehl INPUT kann auch deine Eingabeaufforderung ausgeben, sodass du keinen separaten
PRINT-Befehl brauchst. Das funktioniert zum Beispiel genauso wie das obige Programm:

INPUT „Länge der Seite 1”; a
INPUT "Länge der Seite 2"; b
PRINT "Die Länge der Hypotenuse ist" SQR(a * a + b * b)

Mit dem Befehl INPUT kannst du schließlich eine Reihe von durch Kommas getrennten Zahlen
eingeben, wobei jede Zahl in einer anderen Variablen gespeichert wird.

Zum Beispiel:

INPUT "Gib die Länge der beiden Seiten ein: ", a, b
PRINT "Die Länge der Hypotenuse ist" SQR(a * a + b * b)

Wenn der Benutzer 12,15 eingibt, wird die Zahl 12 in der Variablen a und 15 in der
Variablen b gespeichert.

Eine andere Möglichkeit, Eingaben von der Konsole zu bekommen, ist der Befehl LINE INPUT.
Damit wird die ganze Zeile, die der Benutzer eingegeben hat, in eine String-Variable gespeichert. Wie
beim Befehl INPUT kannst du auch hier eine Eingabeaufforderung festlegen. Hier ein einfaches
Beispiel:

LINE INPUT „Wie heißt du?“, s$
PRINT „Hallo “ s$

Wir werden später in diesem Tutorial auf Zeichenfolgenvariablen eingehen, aber im Moment kannst
du sie dir als Variablen vorstellen, die eine Folge von Zeichen enthalten. Wenn du das obige
Programm ausführst und bei der Eingabeaufforderung „John“ eingibst, antwortet das Programm mit
„Hallo John“.

Manchmal möchtest du nicht warten, bis der Benutzer die Eingabetaste drückt, sondern jedes Zeichen
sofort nach der Eingabe erhalten. Dies ist mit der Funktion INKEY$ möglich, die den Wert des
Zeichens als Zeichenfolge mit nur einem Zeichen oder als leere Zeichenfolge (d. h. ohne Zeichen)
zurückgibt, wenn nichts eingegeben wurde.

GOTO und Labels

Eine Methode zur Steuerung des Programmablaufs ist der Befehl GOTO. Dieser weist MMBasic im
Wesentlichen an, zu einem anderen Teil des Programms zu springen und die Ausführung von dort aus
fortzusetzen. Das Ziel von GOTO ist ein Label, das zunächst erklärt werden muss.

Ein Label ist ein Bezeichner, der einen Teil des Programms markiert. Er muss an erster Stelle in der
Zeile stehen und mit einem Doppelpunkt (:) enden. Der Name, den du verwendest, kann bis zu 31
Zeichen lang sein und muss denselben Regeln folgen wie der Name einer Variablen. In der folgenden
Programmzeile ist beispielsweise LoopBack ein Label:

PicoMite Benutzerhandbuch Seite 275

LoopBack: a = a + 1

Wenn du mit dem Befehl GOTO zu diesem bestimmten Teil des Programms springen willst, würdest
du den Befehl wie folgt verwenden:

GOTO LoopBack

Um das Ganze in einen Zusammenhang zu bringen, gibt das folgende Programm alle Zahlen von 1 bis
10 aus:

z = 0
LoopBack: z = z + 1
PRINT z
IF z < 10 THEN GOTO LoopBack

Das Programm fängt damit an, die Variable z auf Null zu setzen und sie dann in der nächsten Zeile
auf 1 zu erhöhen. Der Wert von z wird ausgegeben und dann geprüft, ob er kleiner als 10 ist. Wenn
er kleiner als 10 ist, springt die Programmausführung zurück zum Label LoopBack, wo der Vorgang
wiederholt wird. Irgendwann erreicht der Wert von z den Wert 10, und das Programm läuft bis zum
Ende durch und wird beendet.

Beachte, dass eine FOR-Schleife das Gleiche machen kann (und einfacher ist), also ist dieses Beispiel
nur dazu da, um zu zeigen, was der GOTO-Befehl kann.

Früher hatte der GOTO-Befehl einen schlechten Ruf. Das liegt daran, dass man mit GOTOs ein
Programm erstellen kann, das ständig von einem Punkt zum anderen springt (oft als „Spaghetti-Code”
bezeichnet), und solche Programme sind für andere Programmierer fast unmöglich zu verstehen. Mit
Konstrukten wie mehrzeiligen IF-Anweisungen ist der Bedarf an GOTO-Anweisungen
zurückgegangen, und sie sollten nur verwendet werden, wenn es keine andere Möglichkeit gibt, den
Programmablauf zu ändern.

Prüfung auf Primzahlen

Das folgende einfache Programm vereint viele der zuvor besprochenen Programmierfunktionen.

DO
 InpErr:
 PRINT
 INPUT „Gib eine Zahl ein: “; a
 IF a < 2 THEN
 PRINT „Die Zahl muss mindestens 2 sein“
 GOTO InpErr
 ENDIF

 Divs = 0
 FÜR x = 2 BIS SQR(a)
 r = a/x
 WENN r = FIX(r) DANN Divs = Divs + 1
 NÄCHSTES x

 DRUCKE a " ist ";
 WENN Divs > 0 DANN DRUCKE "nicht ";
 DRUCKE „eine Primzahl.“
LOOP

Zuerst wird (auf der Konsole) nach einer Zahl gefragt. Wenn sie eingegeben wurde, wird geprüft, ob
es sich um eine Primzahl handelt, und eine entsprechende Meldung angezeigt.

Seite276 PicoMite-Benutzerhandbuch

Es fängt mit einer DO-Schleife ohne Bedingung an – also läuft es immer weiter. Das ist genau das,
was wir wollen. Das heißt, wenn der Benutzer eine Zahl eingegeben hat, wird gemeldet, ob es sich um
eine Primzahl handelt oder nicht, und dann wird eine weitere Zahl abgefragt. Der Benutzer kann das
Programm beenden (wenn er will), indem er das Abbruchzeichen (normalerweise STRG-C) eingibt.

Das Programm zeigt dann eine Eingabeaufforderung für den Benutzer an, die mit einem Semikolon
beendet wird. Das heißt, der Cursor bleibt am Ende der Eingabeaufforderung für den Befehl INPUT
stehen, der die Zahl abfragt und in der Variablen a speichert.

Danach wird die Zahl geprüft. Wenn sie kleiner als 2 ist, wird eine Fehlermeldung angezeigt und das
Programm springt zurück und fragt erneut nach der Zahl.

Jetzt können wir prüfen, ob die Zahl eine Primzahl ist. Das Programm nutzt eine FOR-Schleife, um
die möglichen Teiler durchzugehen und zu prüfen, ob jeder einzelne die eingegebene Zahl
gleichmäßig teilen kann. Jedes Mal, wenn das passiert, erhöht das Programm die Variable Divs.

Beachte, dass die Prüfung mit der Funktion FIX(r) durchgeführt wird, die einfach alle Ziffern nach
dem Dezimalpunkt entfernt. Die Bedingung r = FIX(r) ist also wahr, wenn r eine ganze Zahl
ist (d. h. keine Ziffern nach dem Dezimalpunkt hat).

Schließlich erstellt das Programm die Meldung für den Benutzer. Wichtig ist, dass, wenn die Variable
Divs größer als Null ist, eine oder mehrere Zahlen gefunden wurden, die die Testzahl gleichmäßig
teilen können. In diesem Fall fügt die IF-Anweisung das Wort „nicht” in die Ausgabemeldung ein.

Wenn die eingegebene Zahl zum Beispiel 21 war, sieht der Benutzer diese Antwort:

 21 ist keine Primzahl.

Dies ist das Ergebnis der Ausführung des Programms und ein Teil der Ausgabe:

Du kannst dieses Programm testen, indem du es mit dem Editor (dem Befehl EDIT) eingibst.

Mit deinen neu erworbenen Kenntnissen kannst du dann versuchen, es effizienter zu gestalten. Da das
Programm beispielsweise zählt, wie oft eine Zahl durch die Testzahl teilbar ist, dauert es viel länger
als nötig, um eine Nicht-Primzahl zu erkennen. Das Programm würde viel effizienter laufen, wenn es
bei der ersten Zahl, die sich gleichmäßig teilen lässt, aus der FOR-Schleife springen würde. Dazu
kannst du den Befehl GOTO verwenden oder den Befehl EXIT FOR, der die FOR-Schleife sofort
beendet.

Weitere Effizienzsteigerungen sind möglich, indem man nur die Division mit ungeraden Zahlen testet
(indem man zunächst eine gerade Zahl testet, dann die FOR-Schleife bei 3 startet und STEP 2
verwendet) oder indem man nur Primzahlen für den Test verwendet (was allerdings viel komplizierter
wäre).

PicoMite Benutzerhandbuch Seite 277

Arrays

Arrays sind etwas, das du auf den ersten Blick wahrscheinlich
nicht für nützlich hältst, aber wenn du sie brauchst, wirst du sie
tatsächlich als sehr praktisch empfinden.

Ein Array lässt sich am besten als eine Reihe von Briefkästen für
einen Block von Wohnungen oder Eigentumswohnungen
vorstellen, wie rechts dargestellt. Die Briefkästen befinden sich
alle an derselben Adresse, und jeder Kasten steht für eine
Wohnung oder Eigentumswohnung an dieser Adresse. Du kannst
einen Brief in den Kasten für Wohnung eins, Wohnung zwei
usw. legen.

Ähnlich ist ein Array in BASIC eine einzelne Variable mit
mehreren Untereinheiten (in BASIC als Elemente bezeichnet), die nummeriert sind. Du kannst Daten
in Element eins, Element zwei usw. legen. In BASIC wird ein Array mit dem Befehl DIM erstellt,
zum Beispiel:

DIM numarr(300)

Dadurch wird ein Array mit dem Namen numarr erstellt, das 301 Elemente (stell dir diese als
Briefkästen vor) im Bereich von 0 bis 300 enthält. Standardmäßig beginnt ein Array bei Null, daher
gibt es ein zusätzliches Element, sodass die Gesamtzahl 301 beträgt. Um ein bestimmtes Element im
Array (d. h. einen bestimmten Briefkasten) anzugeben, verwendest du einen Index, der einfach die
Nummer des Array-Elements ist, auf das du zugreifen möchtest. Wenn du zum Beispiel das Element
Nummer 100 in diesem Array auf (sagen wir) die Zahl 876 setzen willst, machst du das so:

numarr(100) = 876

Normalerweise ist der Index eines Arrays keine konstante Zahl wie in diesem Beispiel (also 100),
sondern eine Variable, die geändert werden kann, um auf verschiedene Array-Elemente zuzugreifen.

Als Beispiel für die Verwendung eines Arrays stell dir vor, du möchtest die Höchsttemperatur für
jeden Tag des Jahres aufzeichnen und am Ende des Jahres den Gesamtdurchschnitt berechnen. Du
könntest normale Variablen verwenden, um die Temperatur für jeden Tag aufzuzeichnen, aber du
würdest 365 davon benötigen, was dein Programm ziemlich unhandlich machen würde. Stattdessen
könntest du ein Array definieren, um die Werte wie folgt zu speichern:

DIM days(365)

Jeden Tag müsstest du die Temperatur an der richtigen Stelle im Array speichern. Wenn die Nummer
des Tages im Jahr in der Variablen doy und die Höchsttemperatur in der Variablen maxtemp
gespeichert wäre, würdest du den Messwert wie folgt speichern:

days(doy) = maxtemp

Am Ende des Jahres wäre es einfach, den Durchschnitt für das Jahr zu berechnen.
Zum Beispiel:

Gesamt = 0
FÜR i = 1 bis 365
 Gesamt = Gesamt + Tage(i)
NEXT i
PRINT „Durchschnitt ist:“ Gesamt / 365

Das ist viel einfacher, als 365 einzelne Variablen zu addieren und zu
mitteln.

Das obige Array war eindimensional, aber du kannst auch mehrere
Dimensionen haben. Wenn wir wieder zu unserem Beispiel mit den
Briefkästen zurückkommen, könnte man sich ein zweidimensionales Array
wie ein mehrstöckiges Wohnhaus vorstellen. Ein Block könnte eine Reihe

Seite278 PicoMite-Benutzerhandbuch

mit vier Briefkästen für die erste Etage haben, eine weitere Reihe mit vier Briefkästen für die zweite
Etage und so weiter. Um einen Brief in einen Briefkasten zu werfen, musst du die Etagennummer und
die Nummer der Einheit auf dieser Etage angeben.

In BASIC wird so ein Array mit zwei durch ein Komma getrennten Indizes angegeben. Zum Beispiel:

LetterBox(Etage, Einheit)

Als praktisches Beispiel nehmen wir an, du musstest die Höchsttemperatur für jeden Tag über einen
Zeitraum von fünf Jahren aufzeichnen. Dazu könntest du das Array wie folgt dimensionieren:

DIM days(365, 5)

Der erste Index ist der Tag im Jahr und der zweite ist eine Zahl, die das Jahr angibt. Wenn du den Tag
100 im Jahr 3 auf 24 Grad setzen möchtest, würdest du das so machen:

days(100, 3) = 24

In MMBasic für die PicoMite-Firmware kannst du mit dem RP2040-Prozessor bis zu sechs
Dimensionen und mit dem RP2350-Prozessor bis zu fünf Dimensionen verwenden. Die Größe eines
Arrays ist nur durch die Menge des verfügbaren freien RAM begrenzt.

Ganzzahlen

Bisher waren alle Zahlen und Variablen, die wir verwendet haben, Gleitkommazahlen. Wie schon
gesagt, sind Gleitkommazahlen praktisch, weil sie die Stellen nach dem Komma verfolgen und bei
Divisionen ein sinnvolles Ergebnis liefern. Wenn du also einfach nur was erledigen willst und dich
nicht um die Details kümmerst, solltest du bei Gleitkommazahlen bleiben.

Die Einschränkung von Gleitkommazahlen besteht jedoch darin, dass sie Zahlen als Annäherung mit
einer Genauigkeit von 14 Stellen in der PicoMite-Firmware speichern. In den meisten Fällen ist diese
Eigenschaft von Gleitkommazahlen kein Problem, aber es gibt einige Fälle, in denen du größere
Zahlen genau speichern musst.

Nehmen wir zum Beispiel an, du möchtest die Zeit auf die Mikrosekunde genau manipulieren , damit
du zwei verschiedene Datums-/Zeitangaben vergleichen und herausfinden kannst, welche davon
früher ist. Der einfachste Weg, dies zu tun, besteht darin, die Datums-/Zeitangabe in die Anzahl der
Mikrosekunden seit einem bestimmten Datum (z. B. dem 1. Januar des Jahres Null) umzuwandeln –
dann ist es nur noch eine Frage der arithmetischen Vergleichung in einer IF-Anweisung, um das
frühere der beiden Daten zu ermitteln.

Das Problem ist, dass die Anzahl der Mikrosekunden seit diesem Datum den Genauigkeitsbereich von
Gleitkommavariablen überschreitet, und hier kommen Integer-Variablen ins Spiel. Eine Integer-
Variable kann sehr große Zahlen bis zu neun Millionen Millionen Millionen (oder
±9223372036854775807, um genau zu sein) genau speichern.

Der Nachteil bei der Verwendung einer Ganzzahl ist, dass sie keine Brüche (d. h. Zahlen nach dem
Komma) speichern kann. Jede Berechnung, die ein gebrochenes Ergebnis liefert, wird bei der
Zuweisung zu einer Ganzzahl auf die nächste ganze Zahl auf- oder abgerundet. Diese Eigenschaft
kann jedoch bei der Arbeit mit Geld nützlich sein – zum Beispiel möchtest du niemandem eine
Rechnung über 100,13333333333 $ schicken.

Eine Ganzzahlvariable lässt sich ganz einfach erstellen, indem man das Prozentzeichen (%) als Suffix
an einen Variablennamen anhängt. sec% ist zum Beispiel eine Ganzzahlvariable. Innerhalb eines
Programms kann man Ganzzahlen und Gleitkommazahlen mischen, und MMBasic nimmt die
erforderlichen Umrechnungen vor. Wenn man jedoch die volle Genauigkeit von Ganzzahlen
beibehalten möchte, sollte man eine Vermischung der beiden vermeiden.

Genau wie bei Gleitkommazahlen kannst du auch Arrays von Ganzzahlen erstellen. Dazu musst du
lediglich das Prozentzeichen als Suffix an den Array-Namen anhängen. Ein Beispiel: days%(365,
5).

PicoMite Benutzerhandbuch Seite 279

Anfänger sind oft verwirrt, wann sie Gleitkommazahlen und wann Ganzzahlen verwenden sollen. Die
Antwort ist einfach: Verwende immer Gleitkommazahlen, es sei denn, du benötigst eine extrem hohe
Genauigkeit. Das kommt nicht oft vor, aber wenn du sie brauchst, wirst du feststellen, dass
Ganzzahlen sehr nützlich sind.

Zeichenfolgen

Zeichenfolgen sind ein weiterer Variablentyp (wie Gleitkommazahlen und Ganzzahlen).
Zeichenfolgen werden verwendet, um eine Folge von Zeichen zu speichern. Zum Beispiel im Befehl:

PRINT "Hallo"

ist die Zeichenkette „Hello” eine Zeichenkettenkonstante. Beachte, dass eine Konstante etwas ist, das
sich nicht ändert (im Gegensatz zu einer Variablen, die sich ändern kann), und dass
Zeichenkettenkonstanten immer in doppelte Anführungszeichen gesetzt werden.

Zeichenfolgenvariablennamen verwenden das Dollarzeichen ($) als Suffix, um sie als Zeichenfolge
statt als normale Gleitkommavariable zu kennzeichnen, und du kannst ihre Werte mit einer normalen
Zuweisung festlegen. Hier sind ein paar Beispiele (beachte, dass das zweite Beispiel ein Array von
Zeichenfolgen verwendet):

Car$ = "Holden"
Country$(12) = „India“
Name$ = "Fred"

Du kannst Zeichenfolgen auch mit dem Pluszeichen verbinden:

Wort1$ = "Hallo"
Wort2$ = „Welt“
Begrüßung$ = Wort1$ + " " + Wort2

In diesem Fall ist der Wert von Greeting$ „Hallo Welt“.

Zeichenfolgen kannst du auch mit Operatoren wie = (gleich), <> (ungleich), < (kleiner als) usw.
vergleichen. Zum Beispiel:

IF Car$ = "Holden" THEN PRINT "War ein in Australien
hergestelltes Auto"

Der Vergleich wird mit dem vollständigen ASCII-Zeichensatz gemacht, sodass ein Leerzeichen vor
einem druckbaren Zeichen steht. Außerdem wird beim Vergleich zwischen Groß- und
Kleinschreibung unterschieden, sodass „holden” nicht gleich „Holden” ist. Mit der Funktion
UCASE() kannst du die Zeichenfolge in Großbuchstaben umwandeln und dann einen Vergleich ohne
Berücksichtigung der Groß-/Kleinschreibung durchführen. Zum Beispiel:

IF UCASE$(Car$) = "HOLDEN" THEN PRINT "War ein in Australien
hergestelltes Auto"

Du kannst Zeichenfolgen-Arrays verwenden, musst aber bei ihrer Deklaration vorsichtig sein, da dir
schnell der RAM (der allgemeine Speicher, der zum Speichern von Variablen usw. verwendet wird)
ausgehen kann. Das liegt daran, dass MMBasic standardmäßig 255 Byte RAM für jedes Element des
Arrays zuweist. Ein Zeichenfolgen-Array mit 100 Elementen belegt beispielsweise standardmäßig 25
KB RAM.

Um das zu vermeiden, kannst du den LENGTH-Qualifizierer benutzen, um die maximale Größe jedes
Elements zu begrenzen. Wenn du zum Beispiel weißt, dass die maximale Länge jeder Zeichenfolge,
die im Array gespeichert wird, weniger als 20 Zeichen beträgt, kannst du die folgende Deklaration
verwenden, um nur 20 Byte für jedes Element zuzuweisen:

DIM MyArray$(100) LENGTH 20

Das resultierende Array belegt dann nur 2 KB RAM.

Du kannst den LENGTH-Qualifizierer auch verwenden, wenn du eine normale (nicht als Array
definierte) Zeichenfolgenvariable deklarierst. Dadurch sparst du 256 Byte RAM, wenn die Länge 9

Seite280 PicoMite-Benutzerhandbuch

oder weniger (RP2040) bzw. 15 oder weniger (RP2350) beträgt.

Manipulieren von Zeichenfolgen

Die Bearbeitung von Zeichenfolgen ist eine der Stärken von MMBasic. Mit ein paar einfachen
Funktionen kannst du Zeichenfolgen zerlegen und allgemein bearbeiten. Die grundlegenden
Zeichenfolgenfunktionen sind:

LEFT$(string$, nbr) Gibt eine Teilzeichenfolge von string$ mit nbr Zeichen vom Anfang der
Zeichenfolge zurück.

RIGHT$(Zeichenfolge$, nbr) Wie oben, gibt aber nbr Zeichen vom rechten Ende der
Zeichenkette zurück.

MID$(Zeichenfolge$, pos, nbr) Gibt eine Teilzeichenfolge von string$ mit nbr Zeichen zurück,
beginnend mit dem Zeichen pos in der Zeichenfolge (d. h. in der Mitte
der Zeichenfolge).

Wenn zum Beispiel S$ = „Dies ist eine Zeichenfolge“
dann: R$ = LEFT$(S$, 7) würde der Wert von R$ auf „This is” gesetzt werden
und: R$ = RIGHT$(S$, 8) würde dazu führen, dass der Wert von R$ auf „eine
Zeichenfolge” gesetzt wird
und schließlich: R$ = MID$(S$, 6, 2) würde dazu führen, dass der Wert von R$ auf „is”
gesetzt wird.

Beachte, dass in MID$() die erste Zeichenposition in einer Zeichenfolge die Nummer 1 ist, die zweite
die Nummer 2 und so weiter. Wenn man also das erste Zeichen als eins zählt, ist die sechste Position
der Anfang des Wortes „is”.

Eine weitere nützliche Funktion ist:

INSTR(Zeichenfolge$, Muster$) Gibt eine Zahl zurück, die die Position angibt, an der pattern$ in
string$ vorkommt.

Das kann man nutzen, um eine Zeichenkette innerhalb einer anderen Zeichenkette zu suchen. Die
zurückgegebene Zahl ist die Position der Teilzeichenkette innerhalb der Hauptzeichenkette. Wie bei
MID$() ist der Anfang der Zeichenkette die Position 1.

Wenn zum Beispiel S$ = „This is a string“
Dann: pos = INSTR(S$, " ")
würde dazu führen, dass pos auf die Position des ersten Leerzeichens in S$ (d. h. 5) gesetzt
wird.

INSTR() kann mit anderen Funktionen kombiniert werden, sodass das erste Wort in S$
zurückgegeben wird:

R$ = LEFT$(S$, INSTR(S$, " ") - 1)

Es gibt auch eine erweiterte Version von INSTR():

INSTR(pos, string$, pattern$) Gibt eine Zahl zurück, die die Position angibt, an der pattern$ in
string$ vorkommt, wenn die Suche an der Zeichenposition pos
beginnt.

So können wir das zweite Wort in S$ mit folgendem Befehl finden:
pos1 = INSTR(S$, " ")
pos2 = INSTR(pos1 + 1, S$, " ")
r$ = MID$(S$, pos1 + 1, pos2 – pos1)

Das letzte Beispiel ist ziemlich kompliziert, daher lohnt es sich, es im Detail durchzugehen, damit du
verstehst, wie es funktioniert.

Beachte, dass INSTR() die Zahl Null zurückgibt, wenn die Teilzeichenfolge nicht gefunden wird, und
dass jede Zeichenfolgenfunktion einen Fehler auslöst (und das Programm anhält), wenn sie als

PicoMite Benutzerhandbuch Seite 281

Zeichenposition verwendet wird. In einem praktischen Programm würdest du also zuerst prüfen, ob
INSTR() die Zahl Null zurückgibt, bevor du diesen Wert verwendest.

Zum Beispiel:

r$ = ""
pos1 = INSTR(S$, " ")
wenn pos1 > 0 DANN
 pos2 = INSTR(pos1 + 1, S$, " ")
 wenn pos2 größer als 0 ist, dann r$ = MID$(S$, pos1 + 1, pos2
– pos1)
ENDIF

Wissenschaftliche Notation

Bevor wir das Thema Datentypen abschließen, müssen wir noch auf Fließkommazahlen und
wissenschaftliche Notation eingehen.

Die meisten Zahlen können ganz normal geschrieben werden, zum Beispiel 11 oder 24,5, aber sehr
große oder kleine Zahlen sind schwieriger. Zum Beispiel wird geschätzt, dass es auf der Erde
7500000000000000000 Sandkörner gibt. Das Problem bei dieser Zahl ist, dass man leicht den
Überblick darüber verliert, wie viele Nullen sie enthält, und es daher schwierig ist, sie mit einer
ähnlich großen Zahl zu vergleichen.

Ein Wissenschaftler würde diese Zahl als 7,5 x 1018schreiben, was als wissenschaftliche Notation
bezeichnet wird und viel leichter zu verstehen ist.

Bei Verwendung des Befehls PRINT verwendet MMBasic automatisch die wissenschaftliche
Notation, wenn sehr große oder kleine Gleitkommazahlen ausgegeben werden. Wenn die oben
genannte Zahl beispielsweise in einer Gleitkommavariablen gespeichert wäre, würde der Befehl
PRINT sie als 7,5E+18 anzeigen (dies ist die BASIC-Darstellung für 7,5 x 1018). Ein weiteres
Beispiel: Die Zahl 0,0000000456 würde als 4,56E-8 angezeigt werden, was 4,56 x 10-8entspricht.

Du kannst auch die wissenschaftliche Schreibweise verwenden, wenn du Konstanten in MMBasic
eingibst. Zum Beispiel:

SandGrains = 7,5E+18

MMBasic nutzt die wissenschaftliche Schreibweise nur für Gleitkommazahlen (nicht für ganze
Zahlen). Wenn du zum Beispiel die Anzahl der Sandkörner einer ganzzahligen Variablen zuweist,
zeigt der Befehl PRINT sie als normale Zahl an (mit vielen Nullen).

DIM-Befehl

Wir haben den DIM-Befehl schon mal zum Definieren von Arrays benutzt, aber er kann auch zum
Erstellen von normalen Variablen verwendet werden. Du kannst zum Beispiel gleichzeitig vier String-
Variablen wie folgt erstellen:

DIM STRING Auto, Name, Straße, Stadt

Beachte, dass diese Variablen mit dem Befehl DIM als Zeichenfolgen definiert wurden und wir daher
das Suffix $ nicht brauchen. Die Definition allein reicht aus, damit MMBasic ihren Typ erkennt.
Wenn du diese Variablen in einem Ausdruck verwendest, brauchst du ebenfalls kein Typ-Suffix.
Beispiel:

City = "Sydney"

Du kannst auch das Schlüsselwort INTEGER verwenden, um eine Reihe von Ganzzahlvariablen zu
definieren, und FLOAT, um dasselbe für Gleitkommavariablen zu tun. Diese Art der Notation kann
ebenfalls zur Definition von Arrays verwendet werden.

Zum Beispiel:

DIM INTEGER seconds(200)

Seite282 PicoMite-Benutzerhandbuch

Eine andere Möglichkeit, den Typ von Variablen zu definieren, ist das Schlüsselwort AS. Zum
Beispiel:

DIM Car AS STRING, Name AS STRING, Street AS STRING

Diese Methode wird von Microsoft verwendet (MMBasic versucht, die Kompatibilität mit Microsoft
aufrechtzuerhalten) und ist nützlich, wenn die Variablen unterschiedliche Typen haben. Beispiel:

DIM Auto AS STRING, Alter AS INTEGER, Wert AS FLOAT

Du kannst jede dieser Methoden zum Definieren des Variablentyps verwenden, sie funktionieren alle
gleich.

Der Vorteil der Definition von Variablen mit dem Befehl DIM besteht darin, dass sie klar definiert
sind (vorzugsweise am Anfang des Programms) und ihr Typ (Float, Integer oder String) nicht falsch
interpretiert werden kann.

Du kannst das noch verstärken, indem du die folgenden Befehle ganz oben in deinem Programm
einfügst:

OPTION EXPLICIT
OPTION DEFAULT NONE

Der erste Befehl sagt MMBasic, dass alle Variablen explizit mit DIM definiert werden müssen, bevor
sie benutzt werden können. Der zweite Befehl sagt, dass der Typ aller Variablen bei ihrer Erstellung
angegeben werden muss.

Warum sind diese beiden Befehle wichtig?

Der erste kann helfen, einen häufigen Programmierfehler zu vermeiden, bei dem du versehentlich den
Namen einer Variablen falsch schreibst. Beispielsweise könnte dein Programm die aktuelle
Temperatur in einer Variablen namens Temp gespeichert haben, aber an einer Stelle schreibst du diese
versehentlich falsch als Tmp. Dies führt dazu, dass MMBasic automatisch eine Variable namens Tmp
erstellt und ihren Wert auf Null setzt.

Das ist natürlich nicht das, was du willst, und es führt zu einem subtilen Fehler, der schwer zu finden
sein könnte, selbst wenn du weißt, dass etwas nicht stimmt. Wenn du dagegen den Befehl OPTION
EXPLICIT am Anfang deines Programms verwendest, würde MMBasic die automatische Erstellung
der Variablen verweigern und stattdessen eine Fehlermeldung anzeigen, wodurch dir wahrscheinlich
Kopfzerbrechen erspart bleibt.

Der Befehl OPTION DEFAULT NONE ist auch hilfreich, weil er MMBasic sagt, dass der
Programmierer den Typ jeder Variablen bei der Deklaration genau angeben muss. Man vergisst leicht,
den Typ anzugeben, und wenn man MMBasic den Typ automatisch zuweisen lässt, kann das zu
unerwarteten Problemen führen.

Bei kleinen, schnellen und einfachen Programmen ist es okay, MMBasic die Variablen automatisch
erstellen zu lassen, aber bei größeren Programmen solltest du diese Funktion immer mit OPTION
EXPLICIT deaktivieren und mit OPTION DEFAULT NONE verstärken.

Wenn eine Variable erstellt wird, wird sie für Float- und Integer-Variablen auf Null gesetzt und für
String-Variablen auf eine leere Zeichenfolge (d. h. sie enthält keine Zeichen) . Du kannst ihren
Anfangswert bei der Erstellung mit DIM auf einen anderen Wert setzen.

Zum Beispiel:

DIM FLOAT nbr = 12.56
DIM STRING Car = "Ford", City = "Perth"

Du kannst Arrays auch initialisieren, indem du die Initialisierungswerte wie folgt in Klammern setzt:

DIM s$(2) = ("zero", "one", "two")

Beachte, dass Arrays standardmäßig bei Null beginnen, sodass dieses Array tatsächlich drei Elemente
mit den Indexnummern 0, 1 und 2 hat. Deshalb brauchten wir drei String-Konstanten, um es zu

PicoMite Benutzerhandbuch Seite 283

initialisieren.

Konstanten

Eine häufige Anforderung in der Programmierung ist es, einen Bezeichner zu definieren, der einen
Wert repräsentiert, ohne dass die Gefahr besteht, dass der Wert versehentlich geändert wird – was
passieren kann, wenn Variablen für diesen Zweck verwendet werden. Diese werden als Konstanten
bezeichnet und können I/O-Pin-Nummern, Signalgrenzen, mathematische Konstanten usw.
repräsentieren.

Mit dem Befehl CONST kannst du eine Konstante erstellen. Damit wird ein Bezeichner definiert, der
wie eine Variable funktioniert, aber auf einen Wert gesetzt ist, der nicht geändert werden kann.

Wenn du zum Beispiel die Spannung einer an Pin 31 angeschlossenen Batterie überprüfen möchtest,
könntest du die entsprechenden Werte wie folgt definieren:

CONST BatteryVoltagePin = 31
CONST BatteryMinimum = 1.5

Diese Konstanten kannst du dann im Programm verwenden, wo sie für den Leser verständlicher sind
als einfache Zahlen. Zum Beispiel:

SETPIN BatteryVoltagePin, AIN
IF PIN(BatteryVoltagePin) < BatteryMinimum THEN SoundAlarm

Es ist eine gute Programmierpraxis, Konstanten für alle festen Zahlen zu verwenden, die einen
wichtigen Wert darstellen. Normalerweise werden sie am Anfang eines Programms definiert, wo sie
leicht zu finden sind und bequem von anderen Programmierern angepasst werden können (falls nötig).

Unterprogramme

Eine Unterprogramm ist ein Block von Programmcode, der in sich geschlossen ist (wie ein Modul)
und von überall innerhalb deines Programms aufgerufen werden kann. Für dein Programm sieht es
wie ein integrierter MMBasic-Befehl aus und kann genauso verwendet werden. Angenommen, du
brauchst einen Befehl, der einen Fehler durch Ausgeben einer Meldung auf der Konsole signalisiert.
Du könntest das Unterprogramm wie folgt definieren:

SUB ErrMsg
 PRINT "Fehler erkannt"
END SUB

Wenn diese Unterprogramm in dein Programm eingebettet ist, musst du nur den Befehl ErrMsg
verwenden, wenn du die Meldung anzeigen möchtest. Zum Beispiel:

IF A < B THEN ErrMsg

Die Definition einer Subroutine kann an beliebiger Stelle im Programm stehen, normalerweise steht
sie aber am Ende. Wenn MMBasic während der Ausführung deines Programms auf die Definition
stößt, überspringt es sie einfach.

Das obige Beispiel ist in Ordnung, aber es wäre besser, wenn eine nützlichere Meldung angezeigt
werden könnte, die bei jedem Aufruf der Unterroutine angepasst werden kann. Dies kann erreicht
werden, indem eine Zeichenfolge als Argument (manchmal auch als Parameter bezeichnet) an die
Unterroutine übergeben wird.

In diesem Fall würde die Definition der Unterroutine so aussehen:

SUB ErrMsg Msg$
 PRINT "Fehler: " + Msg$
END SUB

Wenn du dann die Subroutine aufrufst, kannst du die auszugebende Zeichenfolge in der Befehlszeile
der Subroutine angeben.

Zum Beispiel:

Seite284 PicoMite-Benutzerhandbuch

IF A < B THEN ErrMsg "Zahl zu klein"

Wenn die Subroutine so aufgerufen wird, wird die Meldung „Fehler: Zahl zu klein“ auf der
Konsole ausgegeben. Innerhalb der Subroutine hat Msg$ bei einem solchen Aufruf den Wert „Zahl
zu klein“ und wird in der PRINT-Anweisung verkettet, um die vollständige Fehlermeldung zu bilden.

Eine Subroutine kann beliebig viele Argumente haben, die Float-, Integer- oder String-Werte sein
können, wobei jedes Argument durch ein Komma getrennt wird.

Innerhalb der Subroutine verhalten sich die Argumente wie normale Variablen, aber sie existieren nur
innerhalb der Subroutine und verschwinden, wenn die Subroutine beendet wird. Du kannst Variablen
mit dem gleichen Namen im Hauptprogramm haben, die dann innerhalb der Subroutine ausgeblendet
werden und sich von den für die Subroutine definierten Argumenten unterscheiden.

Der Typ des zu übergebenden Arguments kann mit einem Typ-Suffix angegeben werden (d. h. $, %
oder ! für Zeichenfolge, Ganzzahl und Gleitkomma). Im folgenden Beispiel muss das erste Argument
eine Zeichenfolge und das zweite eine Ganzzahl sein:

SUB MySub Msg$, Nbr%
 …
END SUB

MMBasic konvertiert die übergebenen Werte, wenn möglich. Wenn dein Programm also einen
Gleitkommawert als zweites Argument übergibt, konvertiert MMBasic diesen in eine Ganzzahl. Wenn
MMBasic den Wert nicht konvertieren kann, zeigt es eine Fehlermeldung an und kehrt zur
Eingabeaufforderung zurück. Wenn du beispielsweise eine Zeichenkette als zweites Argument
übergeben hast, wird dein Programm mit einer Fehlermeldung beendet.

Du musst die Typ-Suffixe nicht verwenden, sondern kannst den Typ der Argumente stattdessen mit
dem Schlüsselwort AS definieren, ähnlich wie es im Befehl DIM verwendet wird.

Das folgende Beispiel ist zum Beispiel identisch mit dem obigen Beispiel:

SUB MySub Msg AS STRING, Nbr AS INTEGER
 …
END SUB

Wenn du im ganzen Programm nur einen Variablentyp benutzt und diesen Typ mit OPTION
DEFAULT festgelegt hast, kannst du die Frage nach den Variablentypen natürlich komplett
ignorieren.

Wenn eine Subroutine mit einem Argument aufgerufen wird, das eine Variable ist (also keine
Konstante oder kein Ausdruck), erstellt MMBasic eine entsprechende Variable innerhalb der
Subroutine, die auf diese Variable zurückverweist. Jede Änderung an der Variable, die das Argument
innerhalb der Subroutine darstellt, ändert auch die im Aufruf verwendete Variable. Dies wird als
Übergabe von Argumenten durch Referenz bezeichnet.

Am besten lässt sich das anhand eines Beispiels erklären:

DIM MyNumber = 5 ‘ setze die Variable auf 5
CalcSquare MyNumber ' Die Unterroutine berechnet den
Quadratwert
PRINT MyNumber ‘ hiermit wird die Zahl 25 ausgegeben
END

SUB CalcSquare nbr
 nbr = nbr * nbr ' das Argument wird quadriert und
zurückgegeben
END SUB

Die Subroutine CalcSquare nimmt ihr Argument, quadriert es und schreibt es zurück in die Variable,
die das Argument (nbr) darstellt. Weil die Subroutine mit einer Variablen (MyNumber) aufgerufen

PicoMite Benutzerhandbuch Seite 285

wurde, zeigt die Variable nbr wieder auf MyNumber, und jede Änderung an nbr ändert auch
MyNumber entsprechend. Deshalb gibt die PRINT-Anweisung 25 aus.

Die Übergabe von Argumenten per Referenz ist praktisch, weil sie es einer Subroutine ermöglicht,
Werte an den Code zurückzugeben, der sie aufgerufen hat. Es könnte aber zu Problemen führen,
wenn eine Subroutine die Variable, die ein Argument darstellt, als allgemeine Variable verwendet und
ihren Wert ändert. Wenn sie dann mit einer Variablen als Argument aufgerufen würde, würde diese
Variable unbeabsichtigt geändert werden. Um das zu vermeiden, solltest du ihrer Definition das
Schlüsselwort BYVAL voranstellen. Dadurch wird MMBasic angewiesen, immer den Wert des
Arguments zu verwenden, auch wenn es sich um eine Variable handelt, und niemals auf die im Aufruf
verwendete Variable zurückzuweisen.

Wenn du eine Subroutine aufrufst, kannst du einige (oder alle) Parameter weglassen, und sie nehmen
den Wert Null (für Fließkommazahlen oder Ganzzahlen) oder eine leere Zeichenfolge an. Das ist
praktisch, da deine Subroutine erkennen kann, ob ein Parameter fehlt, und entsprechend reagieren
kann.

Hier ist zum Beispiel unsere Subroutine zum Generieren einer Fehlermeldung, aber diese Version
kann auch ohne Angabe einer Fehlermeldung als Parameter verwendet werden:

SUB ErrMsg Msg$
 IF Msg$ = "" THEN
 PRINT "Fehler erkannt"
 ELSE
 PRINT "Fehler: " + Msg$
 ENDIF
END SUB

In einer Subroutine kannst du die meisten Funktionen von MMBasic nutzen, zum Beispiel andere
Subroutinen aufrufen, IF…THEN-Befehle, FOR…NEXT-Schleifen und so weiter. Eine Sache geht
aber nicht: Du kannst nicht mit GOTO aus einer Subroutine springen (wenn du das versuchst, wird
das Ergebnis unklar und du bekommst vielleicht graue Haare).

Normalerweise wird die Unterprogrammierung beendet, wenn der Befehl END SUB erreicht wird,
aber du kannst die Unterprogrammierung auch vorzeitig mit dem Befehl EXIT SUB beenden.

Funktionen

Funktionen sind ähnlich wie Unterprogramme, mit dem Hauptunterschied, dass eine Funktion dazu
dient, einen Wert in einem Ausdruck zurückzugeben. Wenn du zum Beispiel eine Funktion haben
möchtest, die eine Temperatur von Grad Celsius in Fahrenheit umrechnet, könntest du Folgendes
definieren:

FUNCTION Fahrenheit(C)
 Fahrenheit = C * 1,8 + 32
END FUNCTION

Dann kannst du sie in einem Ausdruck verwenden:

Input "Gib eine Temperatur in Celsius ein: ", t
PRINT „Das entspricht“ Fahrenheit(t) „F“

Oder ein anderes Beispiel:

WENN Fahrenheit(temp) <= 32 DANN DRUCKE „Gefrierpunkt“

Du kannst auch das Gegenteil festlegen:

FUNKTION Celsius(F)
 Celsius = (F - 32) * 0,5556
END FUNCTION

Wie du siehst, wird der Funktionsname als normale lokale Variable innerhalb der Unterroutine
verwendet. Erst wenn die Funktion zurückkehrt, wird der Wert für den Ausdruck verfügbar, der sie

Seite286 PicoMite-Benutzerhandbuch

aufgerufen hat.

Die Regeln für die Argumentliste in einer Funktion sind ähnlich wie bei Unterprogrammen. Der
einzige Unterschied besteht darin, dass beim Aufruf einer Funktion immer Klammern um die
Argumentliste gesetzt werden müssen, auch wenn keine Argumente vorhanden sind (beim Aufruf
eines Unterprogramms sind Klammern optional).

Um einen Wert aus der Funktion zurückzugeben, weist man dem Namen der Funktion innerhalb der
Funktion einen Wert zu. Wenn der Name der Funktion mit einem Typ-Suffix endet (d. h. $, % oder !),
gibt die Funktion diesen Typ (Zeichenkette, Ganzzahl oder Gleitkommazahl) zurück, andernfalls gibt
sie den Wert zurück, auf den OPTION DEFAULT gesetzt ist. Die folgende Funktion gibt
beispielsweise eine Zeichenkette zurück:

FUNCTION LVal$(nbr)
 IF nbr = 0 THEN LVal$ = "False" ELSE LVal$ = "True"
END FUNCTION

Du kannst den Typ der Funktion explizit mit dem Schlüsselwort AS angeben, dann brauchst du kein
Typ-Suffix (ähnlich wie beim Definieren einer Variablen mit DIM).

Hier ist das obige Beispiel, das umgeschrieben wurde, um diese Funktion zu nutzen:

FUNKTION LVal(nbr) AS STRING
 IF nbr = 0 THEN LVal = "False" ELSE LVal = "True"
END FUNCTION

In diesem Fall ist der von der Funktion LVal zurückgegebene Typ eine Zeichenfolge.

Wie bei Unterprogrammen kannst du die meisten Funktionen von MMBasic auch in Funktionen
nutzen. Dazu gehören FOR…NEXT-Schleifen, das Aufrufen anderer Funktionen und
Unterprogramme usw. Außerdem kehrt die Funktion zu dem Ausdruck zurück, der sie aufgerufen hat,
wenn der Befehl END FUNCTION erreicht wird, aber du kannst auch vorzeitig zurückkehren, indem
du den Befehl EXIT FUNCTION verwendest.

Lokale Variablen

Variablen, die mit DIM erstellt oder einfach automatisch erstellt werden, werden als globale
Variablen bezeichnet. Das heißt, sie können überall im Programm gesehen und verwendet werden,
auch in Unterprogrammen und Funktionen. Innerhalb eines Unterprogramms oder einer Funktion
musst du jedoch häufig Variablen für verschiedene Aufgaben verwenden, die innerhalb des
Unterprogramms/der Funktion liegen. In portierbarem Code solltest du vermeiden, dass der Name,
den du für eine solche Variable gewählt hast, mit einer globalen Variablen gleichen Namens kollidiert.
Zu diesem Zweck kannst du eine Variable mit dem Befehl LOCAL innerhalb der
Unterprogramm/Funktion definieren.

Die Syntax für LOCAL ist identisch mit dem Befehl DIM, das heißt, die Variable kann ein Array sein,
du kannst den Typ der Variable festlegen und sie mit einem bestimmten Wert initialisieren.

Hier ist zum Beispiel unsere Unterprogramm-Funktion ErrMsg, aber diesmal wurde sie erweitert, um
eine lokale Variable zum Verbinden der Fehlermeldungszeichenfolgen zu verwenden.

SUB ErrMsg Msg$
 LOCAL STRING tstr
 tstr = "Fehler: " + Msg$
 PRINT tstr
END SUB

Die Variable tstr wird innerhalb der Subroutine als LOCAL deklariert, was bedeutet, dass sie (wie
die Argumentliste) nur innerhalb der Subroutine existiert und beim Beenden der Subroutine
verschwindet. Du kannst eine globale Variable namens tstr in deinem Hauptprogramm haben, die
sich von der Variable tstr in der Subroutine unterscheidet (in diesem Fall wird die globale tstr
innerhalb der Subroutine ausgeblendet).

PicoMite Benutzerhandbuch Seite 287

Du solltest für Operationen innerhalb deiner Subroutine oder Funktion immer lokale Variablen
verwenden, da diese dazu beitragen, das Modul wesentlich eigenständiger und portabler zu machen.

Statische Variablen

Lokale Variablen werden bei jedem Start der Unterroutine oder Funktion auf ihre Anfangswerte
(normalerweise Null oder eine leere Zeichenfolge) zurückgesetzt. Manchmal möchtest du aber, dass
die Variable ihren Wert zwischen den Aufrufen beibehält. Diese Art von Variable wird mit dem
Befehl STATIC definiert.

Wir können zeigen, wie nützlich STATIC-Variablen sind, indem wir die Unterprogramm-Funktion
ErrMsg erweitern, um zu verhindern, dass doppelte Aufrufe der Unterprogramm-Funktion wiederholt
dieselbe Meldung anzeigen. Unser Programm könnte diese Unterprogramm-Funktion beispielsweise
an mehreren Stellen aufrufen, aber wenn die Meldung in mehreren aufeinanderfolgenden Aufrufen
identisch ist, möchten wir die Meldung nur einmal sehen.

Das ist unsere neue Subroutine:

SUB ErrMsg Msg$
 STATIC STRING lastmsg
 LOCAL STRING tstr
 IF Msg$ <> lastmsg THEN
 tstr = "Fehler: " + Msg$
 PRINT tstr
 letzteMeldung = Msg
 ENDIF
END SUB

Um die zuletzt angezeigte Meldung zu speichern, benutzen wir eine statische Variable namens
lastmsg. Diese speichert den Text der letzten Meldung, und wir können ihn mit dem aktuellen
Meldungstext vergleichen, um festzustellen, ob er sich unterscheidet und daher ausgegeben werden
sollte. Dadurch würde bei jedem Aufruf mit einem doppelten Meldungstext nur eine Meldung
ausgegeben werden.

Der Befehl STATIC hat genau die gleiche Syntax wie DIM. Das heißt, du kannst verschiedene Arten
von statischen Variablen definieren, einschließlich Arrays, und sie auch mit einem bestimmten Wert
initialisieren.

Die statische Variable wird beim ersten Auftreten des Befehls STATIC erstellt und automatisch auf
Null (bei einem Float- oder Integer-Wert) oder eine leere Zeichenfolge gesetzt. Bei nachfolgenden
Aufrufen der Subroutine oder Funktion erkennt MMBasic, dass die Variable bereits erstellt wurde,
und lässt ihren Wert unverändert (d. h. so wie er beim vorherigen Aufruf war). Wie bei DIM kannst
du auch eine statische Variable auf einen bestimmten Wert initialisieren. Zum Beispiel:

STATIC INTEGER var = 123

Beim ersten Aufruf (wenn die Variable erstellt wird) wird sie auf 123 initialisiert, aber bei späteren
Aufrufen behält sie den zuvor festgelegten Wert bei.

Meistens werden statische Variablen verwendet, um den Status von etwas innerhalb einer Subroutine
oder Funktion zu verfolgen. Ein Status ist eine Aufzeichnung von etwas, das zuvor passiert ist.

Beispiele hierfür sind:

 Wurde der COM-Port schon geöffnet?
 Welche Schritte einer Sequenz haben wir schon gemacht?
 Welcher Text wurde schon angezeigt?

Normalerweise benutzt man globale Variablen (die mit DIM erstellt werden), um einen Status zu
verfolgen, aber manchmal will man, dass dieser in einem Modul enthalten ist, und hier sind statische
Variablen nützlich. Genau wie LOCAL hilft die Verwendung von STATIC dabei, Unterprogramme
und Funktionen eigenständiger und portabler zu machen.

Seite288 PicoMite-Benutzerhandbuch

Tage berechnen

Wir haben in diesem Tutorial bisher viele Programmierbefehle und -techniken behandelt, und bevor
wir es beenden, lohnt es sich, ein Beispiel dafür zu geben, wie sie zusammenwirken. Das folgende
Beispiel nutzt viele Funktionen der Sprache BASIC, um die Anzahl der Tage zwischen zwei Daten zu
berechnen:

' Beispielprogramm zur Berechnung der Anzahl der Tage zwischen zwei Daten

OPTION EXPLICIT
OPTION DEFAULT NONE

DIM STRING s
DIM FLOAT d1, d2

DO
 ‘ Hauptprogrammschleife
 PRINT : PRINT „Gib das Datum im Format TT.MM.JJJJ ein”
 PRINT „Erstes Datum”;
 INPUT s
 d1 = GetDays(s)
 WENN d1 = 0 DANN PRINT „Ungültiges Datum!“ : WEITER
 DRUCKEN „Zweites Datum“;
 INPUT s
 d2 = GetDays(s)
 WENN d2 = 0 DANN DRUCKE „Ungültiges Datum!” : WEITER
 DRUCKE „Die Differenz beträgt“ ABS(d2 - d1) „Tage“
LOOP

' Anzahl der Tage seit dem 1.1.1900 berechnen
FUNCTION GetDays(d$) AS FLOAT
 LOKALER STRING Monat(11) =
("Jan","Feb","März","Apr","Mai","Jun","Jul","Aug","Sep","Okt","Nov","Dez")
 LOKAL FLOAT Tage(11) = (0,31,59,90,120,151,181,212,243,273,304,334)
 LOCAL FLOAT Tag, Monat, Jahr, s1, s2

 ' Suche das Trennzeichen innerhalb eines Datums
 s1 = INSTR(d$, " ")
 WENN s1 = 0 DANN FUNKTION BEENDEN
 s2 = INSTR(s1 + 1, d$, " ")
 WENN s2 = 0 DANN FUNKTION BEENDEN

 ' Hol dir den Tag, den Monat und das Jahr als Zahlen
 day = VAL(MID$(d$, 1, s2 - 1)) - 1
 WENN Tag < 0 ODER Tag > 30 DANN FUNKTION BEENDEN
 FÜR mth = 0 BIS 11
 WENN LCASE$(MID$(d$, s1 + 1, 3)) = Monat(mth) DANN BEENDE FOR
 NEXT mth
 WENN Monat > 11 DANN FUNKTION BEENDEN
 yr = VAL(MID$(d$, s2 + 1)) - 1900
 WENN Jahr < 1 ODER Jahr >= 200 DANN FUNKTION BEENDEN

 ' Anzahl der Tage inklusive Anpassung für Schaltjahre berechnen
 GetDays = (Jahr * 365) + FIX((Jahr - 1) / 4)
 WENN Jahr MOD 4 = 0 UND Monat >= 2 DANN GetDays = GetDays + 1
 GetDays = GetDays + Days(mth) + day
END FUNCTION

Beachte, dass die Zeile, die mit LOCAL STRING Month(11) beginnt, wegen der begrenzten
Seitenbreite umgebrochen wurde – sie besteht aus einer Zeile wie folgt:
LOCAL STRING Month(11) = ("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec")

PicoMite Benutzerhandbuch Seite 289

Dieses Programm fragt den Benutzer an der Konsole nach zwei Daten und rechnet sie dann in die
Anzahl der Tage seit 1900 um. Mit diesen beiden Zahlen ergibt eine einfache Subtraktion die Anzahl
der Tage zwischen ihnen.

Wenn dieses Programm ausgeführt wird,
werden Sie aufgefordert, die beiden Daten
einzugeben. Sie müssen dabei das Format
dd mmm yyyy verwenden.

Der Screenshot rechts zeigt, wie das
Programm aussieht, wenn es läuft.

Das Hauptmerkmal des Programms ist die
definierte Funktion GetDays(), die eine
in der Konsole eingegebene Zeichenfolge
nimmt, sie in ihre Bestandteile Tag, Monat
und Jahr aufteilt und dann die Anzahl der
Tage seit dem 1. Januar 1900 berechnet.

Diese Funktion wird zweimal aufgerufen, einmal für das erste Datum und dann noch einmal für das
zweite Datum. Anschließend muss nur noch das eine Datum (in Tagen) vom anderen abgezogen
werden, um die Differenz in Tagen zu erhalten.

Wir werden nicht im Detail darauf eingehen, wie die Berechnungen durchgeführt werden (z. B. die
Behandlung von Schaltjahren), da dies als Übung für den Leser dienen kann. Es ist jedoch angebracht,
auf einige Funktionen von MMBasic hinzuweisen, die vom Programm verwendet werden.

Es zeigt, wie lokale Variablen verwendet und initialisiert werden können. In der Funktion
GetDays() werden zwei Arrays gleichzeitig deklariert und initialisiert. Diese sind nur eine
praktische Methode, um die Namen der Monate und die kumulative Anzahl der Tage für jeden Monat
nachzuschlagen. Später in der Funktion (der FOR-Schleife) kannst du sehen, wie sie den Umgang mit
zwölf verschiedenen Monaten ziemlich effizient machen.

Eine weitere Funktion, die in diesem Programm hervorgehoben wird, sind die
Zeichenfolgenverarbeitungsfunktionen von MMBasic. Die Funktion INSTR() wird verwendet, um die
beiden Leerzeichen in der Datumszeichenfolge zu finden, und später verwendet die Funktion MID$()
diese, um die Tages-, Monats- und Jahreskomponenten des Datums zu extrahieren. Die Funktion
VAL() wird verwendet, um eine Zeichenfolge aus Ziffern (wie das Jahr) in eine Zahl umzuwandeln,
die in einer numerischen Variablen gespeichert werden kann.

Beachte, dass der Wert einer Funktion bei jedem Aufruf auf Null initialisiert wird und dass sie einen
Wert von Null zurückgibt, wenn ihr kein Wert zugewiesen wurde. Das macht die Fehlerbehandlung
einfach, da wir die Funktion einfach verlassen können, wenn ein Fehler entdeckt wird. Es liegt dann in
der Verantwortung des aufrufenden Programmcodes, auf einen Rückgabewert von Null zu prüfen, der
einen Fehler anzeigt.

Dieses Programm zeigt einen der Vorteile der Verwendung von Unterprogrammen und Funktionen:
Wenn sie geschrieben und vollständig getestet sind, können sie wie eine vertrauenswürdige „Black
Box” behandelt werden, die nicht geöffnet werden muss. Aus diesem Grund sollten Funktionen wie
diese ordnungsgemäß getestet und dann, wenn möglich, unverändert gelassen werden (für den Fall,
dass Sie einen Fehler hinzufügen).

Dieses Programm hat ein paar Funktionen, die wir bisher noch nicht behandelt haben. Die erste ist der
MOD-Operator, der den Rest der Division einer Zahl durch eine andere berechnet. Wenn du zum
Beispiel 4 durch 15 teilst, bekommst du einen Rest von 3, was genau dem Ergebnis des Ausdrucks 15
MOD 4 entspricht. Die Funktion ABS() ist ebenfalls neu und gibt ihr Argument als positive Zahl
zurück (z. B. gibt ABS(-15) +15 zurück, ebenso wie ABS(15)).

Der Befehl EXIT FOR beendet eine FOR-Schleife, auch wenn sie noch nicht zu Ende ist, EXIT
FUNCTION beendet eine Funktion sofort, auch wenn die Ausführung noch nicht am Ende der

Seite290 PicoMite-Benutzerhandbuch

Funktion angekommen ist, und CONTINUE DO sorgt dafür, dass das Programm sofort zum Ende
einer DO-Schleife springt und sie erneut ausführt.

Wozu ist dieses Programm gut? Manche Leute zählen ihr Alter gerne in Tagen, dann ist jeder Tag ein
Geburtstag! Du kannst dein Alter in Tagen berechnen, indem du einfach dein Geburtsdatum und das
heutige Datum eingibst. Das ist zwar nicht besonders nützlich, aber das Programm selbst ist wertvoll,
da es viele Eigenschaften der Programmierung in MMBasic demonstriert. Arbeite dich also durch das
Programm und gehe jeden Abschnitt durch, bis du ihn verstanden hast – es sollte eine lohnende
Erfahrung sein.

PicoMite Benutzerhandbuch Seite 291

	Einführung
	Firmware-Versionen und Dateien
	Eigenständiger Computer
	Eingebetteter Controller
	Prozessorunterstützung
	Dateinamen
	Firmware laden

	Serielle Konsole
	Virtueller serieller Anschluss
	Terminalemulator
	Die Konsole
	Windows 7 und 8.1
	Apple Macintosh
	Linux
	Android

	Erste Schritte
	Ein einfaches Programm
	Eine LED blinken lassen
	Tutorial zur Programmierung in der Sprache BASIC

	Details zur Hardware-
	Module von Drittanbietern
	WebMite-Version für den Raspberry Pi Pico W oder Pico 2 W
	CPU-Varianten
	PSRAM
	I/O-Pin-Beschränkungen
	Stromversorgung
	Taktrate
	Stromverbrauch

	Verwendung von MMBasic
	Befehle und Programmeingabe
	Programmstruktur
	Bearbeiten der Befehlszeile
	Tastenkombinationen
	Ein laufendes Programm unterbrechen
	Optionen einstellen
	Gespeicherte Variablen
	Watchdog-Timer
	PIN-Sicherheit
	Die Bibliothek-
	Programminitialisierung
	MM.STARTUP
	MM.PROMPT
	MM.END

	Vollbild-Editor-
	Bearbeitungsfunktionen
	Markierungsmodus
	Alternative Tasten
	Lange Zeilen
	Verwendung einer Maus
	Farbcodierte Editoranzeige

	Variablen und Ausdrücke
	Variablen
	Konstanten
	OPTION DEFAULT
	OPTION EXPLICIT
	DIM und LOCAL
	STATIC
	CONST
	Sonderzeichen in Zeichenfolgen
	Ausdrücke und Operatoren
	Mischen von Gleitkommazahlen und Ganzzahlen
	Strukturen
	64-Bit-Ganzzahlen ohne Vorzeichen

	Unterprogramme und Funktionen
	Unterprogramme
	Funktionen
	Argumente per Referenz übergeben
	Arrays übergeben
	Vorzeitiges Beenden
	Rekursion
	Beispiele

	Videoausgabe
	VGA-Video
	HDMI-Video
	VGA/PS2-Referenzdesign (Raspberry Pi Pico)
	HDMI/USB-Referenzdesign (Raspberry Pi Pico 2)

	Tastatur/Maus/Gamepad
	PS2-Tastatur auf dem Raspberry Pi Pico (RP2040)
	PS2-Tastatur auf dem Raspberry Pi Pico 2 (RP2350)
	PS2-Maus
	USB-Schnittstelle
	USB-Hub
	USB-Tastatur
	USB-Maus
	USB-Gamepad
	Konfigurieren der Tastatur
	Verwendung einer Maus

	Programm- und Datenspeicherung
	Flash-Steckplätze
	Flash-Dateisystem
	SD-Karten
	Kombinierte Chip-Auswahl
	MMBasic-Unterstützung für Flash- und SD-Karten-Dateisysteme
	XModem-Übertragung
	Bild laden und speichern
	Beispiel für sequentielle E/A
	Zufällige Datei-E/A

	Tonausgabe
	Pulsweitenmoduliertes (PWM) Signal
	Filterschaltungen
	VS1053-Unterstützung
	MCP48n2 DAC-
	Wiedergabe von WAV-, FLAC-, MP3- und MOD- -Dateien
	Sinuswellen erzeugen
	Verwendung von PLAY
	Dienstprogramme
	Spezielle Audioausgabe

	Verwendung der I/O-Pins
	Digitale Eingänge
	Analoge Eingänge
	Zähleingänge
	Digitale Ausgänge
	Pulsweitenmodulation
	Kommunikationsschnittstellen (seriell, SPI und I2C)
	Interrupts

	Unterstützung spezieller Geräte
	Infrarot-Fernbedienungsdecoder
	Infrarot-Fernbedienungssender
	Temperatur messen
	Messung von Luftfeuchtigkeit und Temperatur
	Echtzeituhr-Schnittstelle
	Entfernungsmessung
	LCD-Anzeige
	Tastatur-Schnittstelle
	WS2812-Unterstützung
	OV7670-Kameramodul

	Anzeigepanels
	SPI-basierte Anzeigefelder
	I2C-basierte LCD-Panels
	8-Bit-Parallel-LCD- -Panels
	Anschluss eines 8-Bit-Parallel-LCD-Panels
	Konfigurieren eines 8-Bit-Parallel-LCD-Panels
	8- und 9-Zoll-Displays
	16-Bit-Parallel-LCD-Panels
	RP2350 Erweiterte Display-Unterstützung
	VGA222-Treiber
	Hintergrundbeleuchtungssteuerung
	Touch-Unterstützung
	Kalibrieren des Touchscreens
	Touch-Funktionen
	Touch-Interrupts
	LCD-Display als Konsolenausgabe
	Beispiel für die Konfiguration eines SPI-LCD-Panels

	Grafikfunktionen
	Unterstützte Hardware
	LCD-Panels
	VGA-Video
	HDMI-Video (nur RP2350)

	Farben
	Schriftarten
	Eingebettete Schriftarten
	Bildschirmkoordinaten
	Zeichenbefehle
	Gedrehter Text
	Transparenter Text
	Framebuffer und Ebenen
	BLIT- und Sprite-Befehle
	Bild laden
	Erweiterte Grafik
	Beispiel für LCD-Grafiken

	WiFi- und Internetfunktionen
	Verbindung zu einem WLAN-Netzwerk herstellen
	Fernzugriff auf die Konsole
	Dateiübertragung
	Zeit abrufen
	Implementierung eines Webservers
	Einfügen von Daten in die Webseite
	Senden mehrerer Seiten
	Ein Bild senden
	Antwort „Seite nicht gefunden” (404)

	Live-Grafikdaten auf einer Webseite
	Ein vollständiger Allzweck-Server
	Eine typische Webseite
	Eingabefelder und Steuerung
	Implementierung eines TCP-Clients
	Verwendung von UDP
	E-Mails senden
	Base 64-Kodierung
	MQTT-Client
	Ping
	Audio-Streaming

	Lange Zeichenfolgen
	Lange Zeichenfolgenvariablen
	Befehle für lange Zeichenfolgen
	Funktionen für lange Zeichenfolgen

	MMBasic-Eigenschaften
	Namenskonventionen
	Konstanten
	Implementierungsmerkmale
	Kompatibilität

	Vordefinierte schreibgeschützte Variablen
	Detaillierte Auflistung

	Optionen
	Detaillierte Auflistung

	Befehle
	Detaillierte Auflistung

	Funktionen
	Detaillierte Auflistung

	Veraltete Befehle und Funktionen
	Detaillierte Liste

	Anhang A – Serielle Kommunikation
	E/A-Pins
	Befehle
	Der Befehl OPEN
	Beispiele
	Lesen und Schreiben
	Interrupts

	Anhang B – I2C-Kommunikation
	I/O-Pins
	I2 C-Master-Befehle
	I2C-Slave-Befehle
	Fehler
	7-Bit-Adressierung
	Beispiele

	Anhang C – 1-Wire-Kommunikation
	Anhang D – SPI-Kommunikation
	I/O-Pins
	SPI öffnen
	Übertragungsformat
	Standardmäßiges Senden/Empfangen
	Massenversand/-empfang
	SPI Close
	Beispiele

	Anhang E – Regex-Syntax
	Verwendung regulärer Ausdrücke mit OPTION ESCAPE

	Anhang F – Das PIO-Programmierpaket
	Einführung in das PIO
	Verfügbarkeit von PIOs
	Überblick über PIO
	Programmierung von PIO
	PIO ASSEMBLE
	Der Assembler lässt auch ein besser lesbares Format wie dieses zu
	.end program list 'Programm beenden, list=Ergebnis anzeigen
	PIO-PROGRAMMZEILE
	PIO PROGRAM

	PIO konfigurieren
	FREQUENZ
	PIN-STEUERUNG
	AUSFÜHRUNGSSTEUERUNG
	SHIFT CONTROL
	SCHREIBEN DER ZUSTANDSMASCHINENKONFIGURATION
	SCHREIBEN DER ZUSTANDSMASCHINENKONFIGURATION IN KOMPAKTER FORM
	STARTEN UND STOPPEN EINER ZUSTANDSMASCHINE
	BEISPIELPROGRAMM 1

	FIFOs
	BEISPIELPROGRAMM 2

	DMA zu und von den FIFOs
	BEISPIELPROGRAMM 3
	BEISPIELPROGRAMM 4
	BEISPIELPROGRAMM 5

	Anhang G – Sprites
	Anhang H – Turtle-Grafiken
	Anhang I – Spezielle Tastaturtasten
	Anhang J – Programmieren in BASIC – Ein Tutorial
	Befehlszeile
	Struktur eines BASIC-Programms
	Kommentare
	Der Befehl PRINT
	Variablen
	Ausdrücke
	Die IF-Anweisung
	FOR-Schleifen
	Multiplikationstabelle
	DO-Schleifen
	Konsoleneingabe
	GOTO und Labels
	Prüfung auf Primzahlen
	Arrays
	Ganzzahlen
	Zeichenfolgen
	Manipulieren von Zeichenfolgen
	Wissenschaftliche Notation
	DIM-Befehl
	Konstanten
	Unterprogramme
	Funktionen
	Lokale Variablen
	Statische Variablen
	Tage berechnen

